

2 Xavier, Yuri and Zara attend a sports centre for their judo club's practice sessions. The probabilities of them arriving late are, independently, 0.3, 0.4 and 0.2 respectively.

(a) Calculate the probability that for a particular practice session:

- (i) all three arrive late; *(1 mark)*
- (ii) none of the three arrives late; *(2 marks)*
- (iii) only Zara arrives late. *(2 marks)*

(b) Zara's friend, Wei, also attends the club's practice sessions. The probability that Wei arrives late is 0.9 when Zara arrives late, and is 0.25 when Zara does not arrive late.

Calculate the probability that for a particular practice session:

- (i) both Zara and Wei arrive late; *(2 marks)*
- (ii) either Zara or Wei, but not both, arrives late. *(3 marks)*

2(a)	$P(X) = 0.3 \quad P(Y) = 0.4 \quad P(Z) = 0.2$			
(i)	$P(X \cap Y \cap Z) = 0.3 \times 0.4 \times 0.2 = 0.024$	M1	1	
(ii)	$P(X' \cap Y' \cap Z') = 0.7 \times 0.6 \times 0.8$ $= 0.336$	M1 A1	2	At least 2 correct terms CAO
(iii)	$P(X' \cap Y' \cap Z) = 0.7 \times 0.6 \times 0.2$ $= 0.084$	M1 A1		Correct numerical expression CAO
(b)	$P(W Z) = 0.9 \quad P(W Z') = 0.25$			
(i)	$P(Z \cap W) = 0.2 \times 0.9$ $= 0.18$	M1 A1	2	Correct numerical expression CAO
(ii)	$P((Z \cap W) \cup (Z' \cap W))$ or $1 - [P((Z \cap W) \cup (Z' \cap W))]$ $= 0.2 \times (1 - 0.9)$ + $(1 - 0.2) \times 0.25$	M1 M1		$0.2 \times 0.9 \text{ or (b)(i)}$ $(1 - 0.2) \times (1 - 0.25)$ Cannot score an M1 in both methods
	$= 0.02 + 0.20$ $= 0.22$	A1	3	$1 - (0.18 + 0.60)$ CAO
		Total	11	

6 A housing estate consists of 320 houses: 120 detached and 200 semi-detached. The numbers of children living in these houses are shown in the table.

	Number of children				Total
	None	One	Two	At least three	
Detached house	24	32	41	23	120
Semi-detached house	40	37	88	35	200
Total	64	69	129	58	320

A house on the estate is selected at random.

D denotes the event ‘the house is detached’.

R denotes the event ‘no children live in the house’.

S denotes the event ‘one child lives in the house’.

T denotes the event ‘two children live in the house’.

(D' denotes the event ‘not D ’.)

(a) Find:

(i) $P(D)$; (1 mark)

(ii) $P(D \cap R)$; (1 mark)

(iii) $P(D \cup T)$; (2 marks)

(iv) $P(D | R)$; (2 marks)

(v) $P(R | D')$. (3 marks)

(b) (i) Name two of the events D , R , S and T that are mutually exclusive. (1 mark)

(ii) Determine whether the events D and R are independent. Justify your answer. (2 marks)

(c) Define, in the context of this question, the event:

(i) $D' \cup T$; (2 marks)

(ii) $D \cap (R \cup S)$. (2 marks)

6	<table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 10%;"></td><td style="width: 15%; text-align: center;">0 (R)</td><td style="width: 15%; text-align: center;">1 (S)</td><td style="width: 15%; text-align: center;">2 (T)</td><td style="width: 15%; text-align: center;">≥3</td><td style="width: 15%; text-align: center;">T</td><td style="width: 10%;"></td></tr> <tr> <td style="text-align: center;">D (D)</td><td style="text-align: center;">24</td><td style="text-align: center;">32</td><td style="text-align: center;">41</td><td style="text-align: center;">23</td><td style="text-align: center;">120</td><td></td></tr> <tr> <td style="text-align: center;">SD (D')</td><td style="text-align: center;">40</td><td style="text-align: center;">37</td><td style="text-align: center;">88</td><td style="text-align: center;">35</td><td style="text-align: center;">200</td><td></td></tr> <tr> <td style="text-align: center;">T</td><td style="text-align: center;">64</td><td style="text-align: center;">69</td><td style="text-align: center;">129</td><td style="text-align: center;">58</td><td style="text-align: center;">320</td><td></td></tr> </table>		0 (R)	1 (S)	2 (T)	≥3	T		D (D)	24	32	41	23	120		SD (D')	40	37	88	35	200		T	64	69	129	58	320					
	0 (R)	1 (S)	2 (T)	≥3	T																												
D (D)	24	32	41	23	120																												
SD (D')	40	37	88	35	200																												
T	64	69	129	58	320																												
(a)(i) $P(D) = \frac{120}{320}$ or $\frac{3}{8}$ or 0.375	B1	1	CAO; or equivalent																														
(ii) $P(D \cap R) = \frac{24}{320}$ or $\frac{3}{40}$ or 0.075	B1	1	CSO; or equivalent																														
(iii) $P(D \cup T) = \frac{120+88}{320} = \frac{129+24+32+23}{320}$ $= \frac{208}{320} \text{ or } \frac{13}{20} \text{ or } 0.65$	M1	A1	2	CAO; or equivalent																													
(iv) $P(D R) = \frac{P(D \cap R)}{P(R)} = \frac{\text{(ii)}}{\text{P}(R)} = \frac{\cancel{24}(320)}{\cancel{64}(320)}$ $= \frac{24}{64} \text{ or } \frac{3}{8} \text{ or } 0.375$	M1	A1	2	M0 if independence assumed CAO; or equivalent																													
(v) $P(R D') = \frac{P(R \cap D')}{P(D')} = \frac{\cancel{40}(320)}{\cancel{200}(320)}$ $= \frac{40}{200} \text{ or } \frac{1}{5} \text{ or } 0.2$	M1	M1	A1	3	numerator allow independence assumed denominator CAO; or equivalent																												
(b)(i) $R \text{ and } S$ or $R \text{ and } T$ or $S \text{ and } T$	B1	1	not D and D'																														
(ii) $P(D) = 0.375 = P(D R)$ or (i) = (iv) so YES	M1	A1	2	$P(D) \times P(R) = 0.375 \times 0.2$ $= 0.075 = P(D \cap R)$ or (ii) or $P(R D) = P(R) = 0.2$, etc																													
(c)(i) A semi-detached house or two children (or both)	B1	B1	2	CAO or equivalent																													
(ii) A detached house and/with less than two children	B1	B1	2	CAO (0 or 1 must not include 'both')																													
Total				16																													

5 Dafydd, Eli and Fabio are members of an amateur cycling club that holds a time trial each Sunday during the summer. The independent probabilities that Dafydd, Eli and Fabio take part in any one of these trials are 0.6, 0.7 and 0.8 respectively.

Find the probability that, on a particular Sunday during the summer:

- (a) none of the three cyclists takes part; *(2 marks)*
- (b) Fabio is the only one of the three cyclists to take part; *(2 marks)*
- (c) exactly one of the three cyclists takes part; *(3 marks)*
- (d) either one or two of the three cyclists take part. *(3 marks)*

5(a)	$\begin{aligned} P(D' \cap E' \cap F') &= 0.4 \times 0.3 \times 0.2 \\ &= 0.024 \end{aligned}$	M1		At least 1 probability correct
(b)	$\begin{aligned} P(D' \cap E' \cap F) &= 0.4 \times 0.3 \times 0.8 \\ &= 0.096 \end{aligned}$	M1	2	CAO; OE
(c)	$\begin{aligned} P(\text{One}) &= \\ & (b) + P(D \cap E' \cap F') + P(D' \cap E \cap F') \\ &= (b) + (0.6 \times 0.3 \times 0.2) + (0.4 \times 0.7 \times 0.2) \\ &= 0.096 + 0.036 + 0.056 = 0.188 \end{aligned}$	M1		Use of 3 possibilities; ignore multipliers
		M1	2	At least 1 new term correct
		A1	3	CAO; OE
(d)	$\begin{aligned} P(\text{One or two}) &= (c) + (3 \text{ terms each of 3 probabilities}) \\ \text{or} \\ &= 1 - (a) - (1 \text{ term of 3 probabilities}) \\ &= 0.188 + (0.6 \times 0.7 \times 0.2) + \\ &\quad (0.6 \times 0.3 \times 0.8) + (0.4 \times 0.7 \times 0.8) \\ &= 0.188 + 0.084 + 0.144 + 0.224 \\ \text{or} \\ &= 1 - 0.024 - (0.6 \times 0.7 \times 0.8) \\ &= 1 - 0.024 - 0.336 \\ &= 0.64 \end{aligned}$	M1		(c) + P(Two) Used; OE; ignore multipliers 1 - (a) - P(Three)
		A1	3	At least 1 new term correct
				CAO; OE
	Total		10	

2 The British and Irish Lions 2005 rugby squad contained 50 players. The nationalities and playing positions of these players are shown in the table.

Playing position	Forward	Nationality			
		English	Welsh	Scottish	Irish
	Forward	14	5	2	6
	Back	8	7	2	6

(a) A player was selected at random from the squad for a radio interview. Calculate the probability that the player was:

- (i) a Welsh back; *(1 mark)*
- (ii) English; *(2 marks)*
- (iii) not English; *(1 mark)*
- (iv) Irish, given that the player was a back; *(2 marks)*
- (v) a forward, given that the player was not Scottish. *(2 marks)*

(b) Four players were selected at random from the squad to visit a school. Calculate the probability that all four players were English. *(3 marks)*

2	Ratios: Penalise first occurrence only of a correct answer			
(a)(i)	$P(\text{Welsh back}) = \frac{7}{50}$ or 0.14	B1	1	CAO; OE
(ii)	$P(\text{English}) = \frac{14+8}{50} = \frac{22}{50}$ or $\frac{11}{25}$ or 0.44	B1	2	Correct expression; PI
(iii)	$P(\text{not English}) = 1 - (\text{ii}) = \frac{28}{50}$ or $\frac{14}{25}$ or 0.56	B1 \checkmark	1	\checkmark on (ii) if used; $0 < p < 1$
(iv)	$P(\text{Irish} \text{back}) = \frac{P(\text{Irish} \cap \text{back})}{P(\text{back})} = \frac{6}{\sum(\text{back})} = \frac{6}{23}$ or 0.26 to 0.261	M1		Used; may be implied by values or answer
(v)	$P(\text{forward} \text{not Scottish}) = \frac{P(\text{forward} \cap \text{not Scottish})}{P(\text{not Scottish})} = \frac{14+5+6}{50-4} = \frac{27-2}{50-4} = \frac{25}{46}$ or 0.54 to 0.544	M1		Used; OE May be implied by values or answer
(b)	$P(4 \times \text{English}) = \left(\frac{22}{50}\right) \times \left(\frac{21}{49}\right) \times \left(\frac{20}{48}\right) \times \left(\frac{19}{47}\right) = \frac{175560}{5527200}$ or $\frac{209}{6580}$ or 0.0317 to 0.032	M1 M1 A1	2	Reducing non-tabulated value 4 times Reducing 50 and multiplying 4 terms (ignore multipliers) CAO/AWFW ($25/50 \Rightarrow 0$)
	Total		11	CAO/AWFW

EDEXCEL S1 JAN 13

7. Given that

$$P(A) = 0.35, \quad P(B) = 0.45 \quad \text{and} \quad P(A \cap B) = 0.13$$

find

(a) $P(A \cup B)$

(2)

(b) $P(A' \mid B')$

(2)

The event C has $P(C) = 0.20$

The events A and C are mutually exclusive and the events B and C are independent.

(c) Find $P(B \cap C)$

(2)

(d) Draw a Venn diagram to illustrate the events A , B and C and the probabilities for each region.

(4)

(e) Find $P([B \cup C]')$

(2)

6.

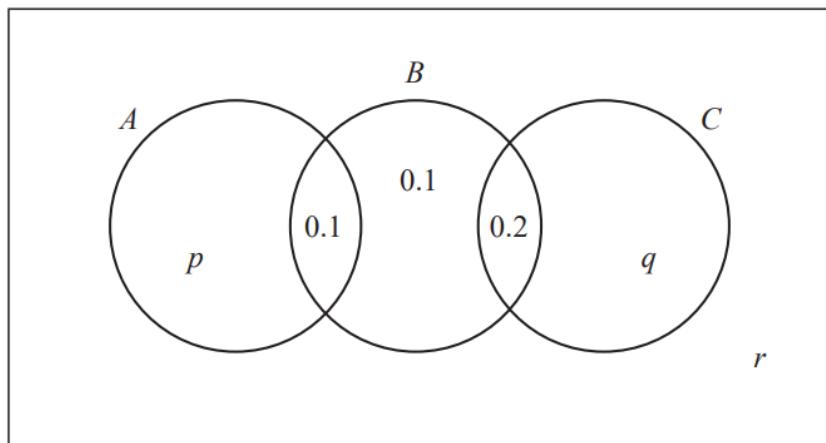


Figure 1

The Venn diagram in Figure 1 shows three events A , B and C and the probabilities associated with each region of B . The constants p , q and r each represent probabilities associated with the three separate regions outside B .

The events A and B are independent.

(a) Find the value of p .

(3)

Given that $P(B|C) = \frac{5}{11}$

(b) find the value of q and the value of r .

(4)

(c) Find $P(A \cup C|B)$.

(2)

EDEXCEL S1 JUN 13

3. In a company the 200 employees are classified as full-time workers, part-time workers or contractors.

The table below shows the number of employees in each category and whether they walk to work or use some form of transport.

	Walk	Transport
Full-time worker	2	8
Part-time worker	35	75
Contractor	30	50

The events F , H and C are that an employee is a full-time worker, part-time worker or contractor respectively. Let W be the event that an employee walks to work.

An employee is selected at random.

Find

(a) $P(H)$ (2)

(b) $P([F \cap W]')$ (2)

(c) $P(W | C)$ (2)

Let B be the event that an employee uses the bus.

Given that 10% of full-time workers use the bus, 30% of part-time workers use the bus and 20% of contractors use the bus,

(d) draw a Venn diagram to represent the events F , H , C and B , (4)

(e) find the probability that a randomly selected employee uses the bus to travel to work. (2)

EDEXCEL S1 JUN12

7. A manufacturer carried out a survey of the defects in their soft toys. It is found that the probability of a toy having poor stitching is 0.03 and that a toy with poor stitching has a probability of 0.7 of splitting open. A toy without poor stitching has a probability of 0.02 of splitting open.

(a) Draw a tree diagram to represent this information. (3)

(b) Find the probability that a randomly chosen soft toy has exactly one of the two defects, poor stitching or splitting open. (3)

The manufacturer also finds that soft toys can become faded with probability 0.05 and that this defect is independent of poor stitching or splitting open. A soft toy is chosen at random.

(c) Find the probability that the soft toy has none of these 3 defects. (2)

(d) Find the probability that the soft toy has exactly one of these 3 defects. (4)