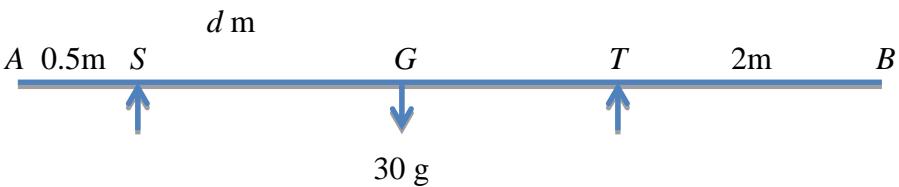

Question Number	Scheme	Marks
1(a)	$\tan \theta = \frac{5}{20}$ $\theta = 14.036..^\circ$ $\theta = 104^\circ \text{ nearest degree}$	M1 A1 A1 (3)
(b)	$\mathbf{p} = 400\mathbf{i} + t(15\mathbf{i} + 20\mathbf{j})$ $\mathbf{q} = 800\mathbf{j} + t(20\mathbf{i} - 5\mathbf{j})$	M1 A1 A1 (3)
(c)	Equate their \mathbf{j} components: $20t(\mathbf{j}) = (800 - 5t)(\mathbf{j})$ $t = 32$ $\mathbf{s} = 800\mathbf{j} + 32(20\mathbf{i} - 5\mathbf{j})$ $= 640\mathbf{i} + 640\mathbf{j}$	M1 A1 M1 A1 (4) 10
1(a)	<p style="text-align: center;">Notes</p> <p>Allow column vectors throughout</p> <p>M1 for $\tan \theta = \pm \frac{5}{20}$ or $\pm \frac{20}{5}$ (or any other complete method)</p> <p>First A1 for $\pm 14.04^\circ$ or $\pm 75.96^\circ$</p> <p>Second A1 for 104°</p>	
1(b) (i) (ii)	M1 for clear attempt at either \mathbf{p} or \mathbf{q} (allow slip but t <u>must</u> be attached to the velocity vector and position vector and velocity vector must be paired up correctly) First A1 $400\mathbf{i} + t(15\mathbf{i} + 20\mathbf{j})$ “ $\mathbf{p} =$ ” not needed but must be clear it's P Second A1 $800\mathbf{j} + t(20\mathbf{i} - 5\mathbf{j})$ “ $\mathbf{q} =$ ” not needed but must be clear it's Q	
1(c)	First M1 for equating their \mathbf{j} components; allow \mathbf{j} 's on both sides First A1 for $t = 32$ Second M1 <u>independent</u> for substituting their t value into their \mathbf{q} from (b) Second A1 for $640\mathbf{i} + 640\mathbf{j}$	

Question Number	Scheme	Marks
2(a)	$T - 0.5g - 1.5g = 2 \times 0.5$ $T = 20.6 \text{ (N)} \text{ or } 21 \text{ (N)}$	M1 A1 A1 (3)
(b)	$R - 1.5g = 1.5 \times 0.5$ <p>Force = 15.5 (N) or 15 (N)</p> <p>OR: $T - R - 0.5g = 0.5 \times 0.5$</p> <p>Force = 15.5 (N) or 15 (N)</p>	M1 A1 A1 (3) OR M1 A1 A1 (3) 6
Notes		
2(a)	<p>N.B. In both parts of this question use the mass which is being used to guide you as to which part of the system is being considered</p> <p>M1 is for an equation for whole system in T only, with usual rules</p> <p>First A1 for a correct equation</p> <p>Second A1 for 20.6 or 21</p>	
2(b)	<p>First M1 is for an equation for the brick only (1st alternative) or for the scale pan only (2nd alternative) with usual rules.</p> <p>First A1 for a correct equation (in the second alternative T does not need to be substituted)</p> <p>Second A1 for 15.5 or 15</p>	
	<p>N.B. If R is replaced by $-R$ in either equation, can score M1A1. This would lead to $R = -15.5$ or -15. The second A1 can then only be scored if the candidate explains why the –ve sign is being ignored.</p>	

Question Number	Scheme	Marks
3.	$F = \frac{1}{8} \times 0.4g$ $-\frac{1}{8} \times 0.4g = 0.4a$ $0 = u^2 + 2(-\frac{1}{8}g) \times 5$ $I = 0.4 \times (3.5 - -4) = 3 \text{ Ns}$	M1 M1 A1 M1 A1 M1 A1 7
	Notes	
3.	First M1 for $1/8 \times 0.4g$ (Allow if g omitted) Second M1 for resolving horizontally with their F (could just be F) First A1 for a correct equation in a only Third M1 for use of $v^2 = u^2 + 2as$ with $v = 0$, $s = 5$ and a calculated value of a . (M0 if $u = 4$ or if $u = 0$) Second A1 for a correct equation in u only (u may be in terms of I) Fourth M1 (M0 if g included or if $u = 0$ or $u = 4$) for $\pm 0.4(u - \pm 4)$ where u is their calculated value. Third A1 for 3, 3.0 or 3.00 (Ns)	


Alternative work –energy method:

$$\begin{aligned}
F &= (\frac{1}{8} \times 0.4g) & \text{M1} \\
: \frac{1}{2} 0.4u^2 &= (\frac{1}{8} \times 0.4g) \times 5 & \text{M2 A2 (M2 if } F \text{ not substituted)} \\
I &= 0.4 \times (3.5 - -4) & \text{M1} \\
&= 3 \text{ (Ns)} & \text{A1}
\end{aligned}$$

Question Number	Scheme	Marks
4(a)		B1 shape (M) B1 figs (40,T) B1 shape (N) B1 figs (30,25) (4)
(b)	<p>For N: $\frac{1}{2}(25 + 25 + t).30 = 975$ OR $\frac{1}{2}(25 + t_1).30 = 975$ $t = 15$ $t_1 = 40$</p> <p>For M: $\frac{1}{2}(25 + t + T).40 = 975$ OR $\frac{1}{2}(t_1 + T).40 = 975$ $T = 8.75$ ($8\frac{3}{4}$ or $\frac{35}{4}$ oe)</p>	M1 A1 DM1 A1 M1 A1 DM1 A1 (8) 12
	ALTERNATIVE: They may find t or t_1 , in terms of T , from their (M) equation, and substitute for t or t_1 in their (N) equation, and then solve for T :	
	<p>For M: $\frac{1}{2}(25 + t + T).40 = 975$ OR $\frac{1}{2}(t_1 + T).40 = 975$ $t = (\frac{1950}{40} - 25 - T)$ $t_1 = (\frac{1950}{40} - T)$</p> <p>For N: $\frac{1}{2}(25 + 25 + t).30 = 975$ OR $\frac{1}{2}(25 + t_1).30 = 975$ sub for t or sub for t_1 $T = 8.75$ ($8\frac{3}{4}$ or $\frac{35}{4}$ oe)</p>	M1 A1 DM1 A1 M1 A1 DM1 A1 (8) 12
4(a)	Notes First B1 (M) for correct shape – <i>must start and finish on the axes</i> . Second B1 for 40 and T marked clearly (if delineators omitted B0) and correctly Third B1 (N) for correct shape – <i>must start and finish on the axes</i> . Fourth B1 for 30 and 25 (if delineators omitted B0) marked clearly and correctly N.B. If graphs do not cross and/or do not finish at the same point, max score is B1B1B0B1.	

	<p>N.B. If graphs done on separate diagrams, mark each and award the higher mark i.e. can score max 2/4 for part (a).</p>	
4(b)	<p>N.B. When attempting to find the area of a triangle, must see $\frac{1}{2} x$ to be able to award an M mark i.e. M0 if $\frac{1}{2}$ is missing</p> <p>N.B. When attempting to find the area of a trapezium, must see something of the form : $\frac{1}{2} x (a + b)h$ to be able to award an M mark i.e. M0 if $\frac{1}{2}$ is missing and bracket is not a sum</p> <p>First M1 for attempt at using 975m distance travelled by N to obtain an equation in one unknown <i>time</i> (usually extra time t after 25 s, but could, for example, be whole time t_1). They may use the area under their graph or use <i>suvat</i> (N.B. Any single <i>suvat</i> equn using $s = 975$ is M0).</p> <p>First A1 for a correct equation in their unknown <i>time</i> e.g. $(30 \times 25) + \frac{1}{2} 30t = 975$ OR $(30 \times 25) + \frac{1}{2} 30(t_1 - 25) = 975$</p> <p>Second M1, dependent on first M, for solving their equation</p> <p>Second A1 for a correct value for their unknown.</p> <p>Third M1 for attempt at using 975m distance travelled by M to obtain an equation in T and possibly one other unknown <i>time</i> (usually extra time t after 25 s, but could, for example, be whole time t_1). They may use the area under their graph or use <i>suvat</i> (N.B. Any <i>suvat</i> equn using $s = 975$ is M0)</p> <p>Third A1 for a correct equation in T and possibly their unknown. This A1 can be earned if they just have a letter for their unknown :- e.g. $40T + \frac{1}{2} 40.(25 + t - T) = 975$ OR $40T + \frac{1}{2} 40.(t_1 - T) = 975$ or <u>for an incorrect numerical value in place of t or t_1</u>.</p> <p>Fourth M1, dependent on first, second and third M's, for solving for T.</p> <p>Fourth A1 for 8.75 or $35/4$ or any other equivalent</p> <p>SEE MARKS FOR ALTERNATIVE ABOVE.</p>	

Question Number	Scheme	Marks
5.	mR $R = 2g \cos 20^\circ + 40 \cos 60^\circ$ $F = 40 \cos 30^\circ - 2g \cos 70^\circ$ $m = \frac{40 \cos 30^\circ - 2g \cos 70^\circ}{2g \cos 20^\circ + 40 \cos 60^\circ}$ $= 0.73 \text{ or } 0.727$	B1 M1 A2 M1 A2 M1 M1 A1 10
Notes		
5.	B1 for μR seen or implied.	
	First M1 for resolving perpendicular to the plane with usual rules (must be using 2(g) with 20° or 70° and 40 with 30° or 60°)	
	First and second A1's for a correct equation. A1A0 if one error	
	Second M1 for resolving parallel to the plane with usual rules (must be using 2(g) with 20° or 70° and 40 with 30° or 60°)	
	Third and fourth A1's for a correct equation. A1A0 if one error	
	Third M1 <u>independent</u> for eliminating R to produce an equation in μ only. Does not need to be $\mu = \dots$	
	Fourth M1 <u>independent</u> for solving for μ	
	Fifth A1 for 0.727 or 0.73	
	N.B. They may choose to resolve in 2 other directions e.g. horizontally and vertically.	
	N.B. If F is replaced by $-F$ in the second equ ⁿ , treat this as an error unless they subsequently explain that they have their F acting in the wrong direction, in which case they could score full marks for the question.	

Question Number	Scheme	Marks
6.	$M(S): Mg \cdot 0.5 = 30g(d - 0.5)$ $M(T): Mg \cdot 2 = 30g(4 - d)$ <div style="display: flex; align-items: center; justify-content: space-between;"> dividing: $4 = \frac{(4 - d)}{(d - 0.5)} \Rightarrow \begin{aligned} \text{(i)} \quad d &= 1.2 \\ \Rightarrow \text{(ii)} \quad M &= 42 \end{aligned}$ </div>	M1 A1 M1 A1 DM1 A1 A1
6.	<p>Notes</p> <p>N.B. They may use a different variable, other than d, in their moments equations e.g. say they use $x = SG$ consistently, they can score all the marks for their two equations and if they eliminate x correctly, DM1 A1 (for M), and, if they found x correctly, then added 0.5 to obtain d, the other A1 also.</p>	
	First M1 for moments about S (need correct no. of terms, so if they don't realise that the reaction at T is zero it's M0) <i>to give an equation in d and M only.</i>	
	First A1 for a correct first equation <i>in d and M only</i> . (A1 for both g's or no g's but A0 if one g is missing)	
	<p>N.B. They may use 2 equations and eliminate to obtain their equation <i>in d and M only</i> e.g. $M(A) 0.5R_S = 30gd$ and $(^) R_S = 30g + Mg$ and then eliminate R_S. The M mark is only earned once they have produced an equation <i>in d and M only</i>, with all the usual rules about correct no. of terms etc applying to all the equations they use to obtain it.</p>	
	Second M1 for moments about T (need correct no. of terms, so if they don't realise that the reaction at S is zero it's M0) <i>to give an equation in d and M only</i>	
	Second A1 for a correct second equation <i>in d and M only</i> . (A1 for both g's or no g's but A0 if one g is missing)	
	<p>N.B. They may use 2 equations and eliminate to obtain their equation <i>in d and M only</i> e.g. $M(B) 2R_T = 30g(6 - d)$ and $(^) R_T = 30g + Mg$ and then eliminate R_T. The M mark is only earned once they have produced an equation <i>in d and M only</i>, with all the usual rules about correct no. of terms etc applying to all the equations they use to obtain it.</p>	

	Third M1, <u>dependent on 1st and 2nd M marks</u> , for eliminating either M or d to produce an equation in either d only or M only.	
	Third A1 for $(d =) 1.2$ oe (N.B. Neither this A mark nor the next one can be awarded <u>if there are any errors in the equations.</u>) Beware: If one g is missing consistently from each of their equations, they can obtain $d = 1.2$ but award A0	
	Fourth A1 for $(M =) 42$	
	Scenario 1: Below are the possible equations, (if they don't use $M(S)$), any two of which can be used, by eliminating R_S , to obtain an equation <i>in d and M only</i> , for the first M1. N.B. If R_T appears in any of these and doesn't subsequently become zero then it's M0.	
	$M(A) \quad 0.5R_S = 30gd$	
	$M(B) \quad 5.5R_S = 30g(6 - d) + 6Mg$	
	$M(T) \quad 3.5R_S = 30g(4 - d) + 4Mg$	
	$(^) \quad R_S = 30g + Mg$	
	Scenario 2: Below are the possible equations, (if they don't use $M(T)$), any two of which can be used, by eliminating R_T , to obtain an equation <i>in d and M only</i> , for the second M1. N.B. If R_S appears in any of these and doesn't subsequently become zero then it's M0.	
	$M(A) \quad 4R_T = 30gd + 6Mg$	
	$M(B) \quad 2R_T = 30g(6 - d)$	
	$M(S) \quad 3.5R_T = 30g(d - 0.5) + 5.5Mg$	
	$(^) \quad R_T = 30g + Mg$	

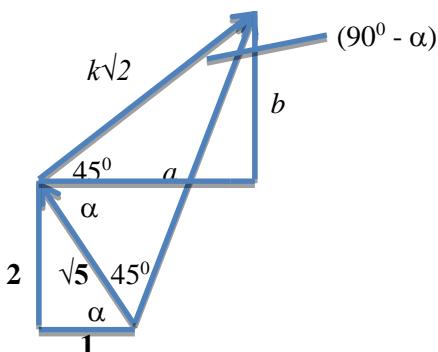
Question Number	Scheme	Marks
7(a)	$\mathbf{F}_2 = k\mathbf{i} + k\mathbf{j}$ $(-1+a)\mathbf{i} + (2+b)\mathbf{j}$ $\frac{-1+a}{2+b} = \frac{1}{3}$ $a = b = k = 2.5; \mathbf{F}_2 = 2.5\mathbf{i} + 2.5\mathbf{j}$ ALTERNATIVE: $\mathbf{F}_2 = k\mathbf{i} + k\mathbf{j}$ $(-1+a)\mathbf{i} + (2+b)\mathbf{j} = p(\mathbf{i} + 3\mathbf{j})$ $-1+a = p$ $2+b = 3p$ $a = b = k = 2.5; \mathbf{F}_2 = 2.5\mathbf{i} + 2.5\mathbf{j}$	B1 M1 DM1 A1 DM1 A1; A1 (7)
(b)	$\mathbf{v} = 3\mathbf{i} - 22\mathbf{j} + 3(3\mathbf{i} + 9\mathbf{j})$ $= 12\mathbf{i} + 5\mathbf{j}$ $ \mathbf{v} = \sqrt{12^2 + 5^2} = 13 \text{ ms}^{-1}$	M1 A1 M1 A1 cso (4) 11
	Notes	
7(a)	<p>B1 for $\mathbf{F}_2 = k\mathbf{i} + k\mathbf{j}$ ($k \neq 1$) seen or implied in working, including for an incorrect final answer, with the wrong k value.</p> <p>First M1 for adding the 2 forces (for this M mark we only need $\mathbf{F}_2 = a\mathbf{i} + b\mathbf{j}$), with \mathbf{i}'s and \mathbf{j}'s collected (which can be implied by later working) but allow a slip.</p> <p><u>(M0 if a and b both assumed to be 1)</u></p> <p>Second M1, dependent on first M1, for ratio of their cpts = 1/3 or 3/1 (Must be correct way up for the M mark)</p> <p>First A1 for a correct equation which may involve two unknowns</p> <p>Third M1, dependent on first and second M1, for solving for k oe</p> <p>Second A1 for a correct k value</p> <p>Third A1 for $2.5\mathbf{i} + 2.5\mathbf{j}$</p>	

ALTERNATIVE: Using two simultaneous equations

B1 for $\mathbf{F}_2 = k\mathbf{i} + k\mathbf{j}$ ($k \neq 1$) seen or implied in working.

First M1 for adding the 2 forces (for this M mark we only need $\mathbf{F}_2 = a\mathbf{i} + b\mathbf{j}$), with \mathbf{i} 's and \mathbf{j} 's collected (LHS of equation) (M0 if a and b both assumed to be 1) but allow a slip

Second M1, dependent on first M1, for equating coeffs to produce *two* equations in 2 or 3 unknowns. Must have p and $3p$ (M0 if p is assumed to be 1 or k)


First A1 for two correct equations

Third M1, dependent on first and second M1, for solving for k oe

Second A1 for a correct k value

Third A1 for $2.5\mathbf{i} + 2.5\mathbf{j}$

ALTERNATIVE: Using magnitudes and directions

$\mathbf{F}_2 = k\mathbf{i} + k\mathbf{j}$, seen or implied

Correct vector triangle

$$\frac{k\sqrt{2}}{\sin 45^\circ} = \frac{\sqrt{5}}{\sin(90^\circ - \alpha)}, \quad \alpha = \arctan 2$$

$$2k = 5$$

$$k = 2.5; \quad \mathbf{F}_2 = 2.5\mathbf{i} + 2.5\mathbf{j}$$

B1

M1

DM1 A1

DM1 A1; A1 (7)

ALTERNATIVE: Using magnitudes and directions

B1 for $\mathbf{F}_2 = k\mathbf{i} + k\mathbf{j}$ seen or implied in working.

First M1 for a correct vector triangle (for this M mark we only need $\mathbf{F}_2 = a\mathbf{i} + b\mathbf{j}$). (M0 if a and b both assumed to be 1 and/or longest side is assumed to be $\sqrt{10}$)

Second M1, dependent on first M1, for using sine rule on vector triangle

First A1 for a correct equation. 45° may not appear exactly.

Third M1, dependent on first and second M1, for solving for k oe

Second A1 for a correct k value

Third A1 for $2.5\mathbf{i} + 2.5\mathbf{j}$

(b)	First M1 for use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $t = 3$ First A1 for $12\mathbf{i} + 5\mathbf{j}$ seen or implied. However, if a wrong \mathbf{v} is seen A0 Second M1 for finding magnitude of their \mathbf{v} Second A1 for 13	

Question Number	Scheme	Marks
8(a)	$F = \frac{1}{5}R$ $R = 1.5g$ $T - F = 1.5a$ $3g - T = 3a$ $T = 1.2g \text{ or } 11.8 \text{ N or } 12 \text{ N}$	M1 B1 M1 A1 M1 A1 DM1 A1 (8)
(b)	$R = \sqrt{T^2 + T^2} \text{ or } 2T \cos 45^\circ \text{ or } \frac{T}{\cos 45^\circ}$ $= 16.6 \text{ (N) or } 17 \text{ (N) or } \frac{6g\sqrt{2}}{5}$ <p style="text-align: center;">Direction is 45° below the horizontal oe</p>	M1 A1 A1 B1 (4) 12
Notes		
8(a)	First M1 for <i>use of</i> $F = \frac{1}{5}R$ in an equation. B1 for $R = 1.5g$ Second M1 for resolving horizontally with usual rules First A1 for a correct equation Third M1 for resolving vertically with usual rules Second A1 for a correct equation N.B. Either of the above could be replaced by a <i>whole system</i> equation: $3g - F = 4.5a$ N.B. All of the marks for the two equations can be scored if they consistently use $-a$ instead of a . Fourth M1 dependent on first, second and third M marks for solving their equations for T Third A1 for 1.2g, 11.8 (N) or 12 (N)	
(b)	First M1 for a complete method for finding the magnitude of the resultant (N.B. M0 if different tensions used), First A1 for $\sqrt{T^2 + T^2}$ or $2T \cos 45^\circ$ Second A1 for 16.6(N) or 17 (N) B1 for 45° below the horizontal or a diagram with an arrow and a correct angle. Ignore subsequent wrong answers e.g. a bearing of 225° , which scores B0, as does SW etc.	