

Figure 1

Figure 1 shows the finite region *R* bounded by the *x*-axis, the *y*-axis and the curve with equation $y = 3\cos\left(\frac{x}{3}\right)$, $0 \le x \le \frac{3\pi}{2}$.

The table shows corresponding values of x and y for $y = 3\cos\left(\frac{x}{3}\right)$.

X	0	$\frac{3\pi}{8}$	$\frac{3\pi}{4}$	$\frac{9\pi}{8}$	$\frac{3\pi}{2}$
у	3	2.77164	2.12132		0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(1)

(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.

(4)

(c) Use integration to find the exact area of R.

Figure 3

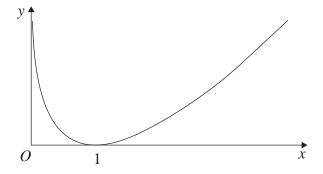


Figure 3 shows a sketch of the curve with equation $y = (x - 1) \ln x$, x > 0.

(a) Complete the table with the values of y corresponding to x = 1.5 and x = 2.5.

х	1	1.5	2	2.5	3
У	0		ln 2		2 ln 3

Given that $I = \int_{1}^{3} (x-1) \ln x \, dx$,

- (b) use the trapezium rule
 - (i) with values of y at x = 1, 2 and 3 to find an approximate value for I to 4 significant figures,
 - (ii) with values of y at x = 1, 1.5, 2, 2.5 and 3 to find another approximate value for I to 4 significant figures.

(5)

(1)

(c) Explain, with reference to Figure 3, why an increase in the number of values improves the accuracy of the approximation.

(1)

(d) Show, by integration, that the exact value of $\int_{1}^{3} (x-1) \ln x \, dx$ is $\frac{3}{2} \ln 3$.

(6)

5. (a) Use the substitution $x = u^2$, u > 0, to show that

$$\int \frac{1}{x(2\sqrt{x}-1)} dx = \int \frac{2}{u(2u-1)} du$$

(3)

(b) Hence show that

$$\int_{1}^{9} \frac{1}{x(2\sqrt{x} - 1)} \, \mathrm{d}x = 2\ln\left(\frac{a}{b}\right)$$

where a and b are integers to be determined.

(7)

16

$$\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv A + \frac{B}{(2x+1)} + \frac{C}{(2x-1)}.$$

(a) Find the values of the constants A, B and C.

(4)

(b) Hence show that the exact value of $\int_{1}^{2} \frac{2(4x^2+1)}{(2x+1)(2x-1)} dx$ is $2 + \ln k$, giving the value of the constant k.

(6)

(8)

4.

Figure 1

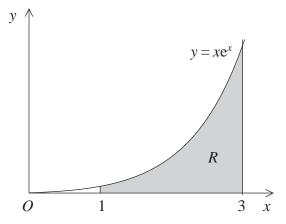


Figure 1 shows the finite shaded region, R, which is bounded by the curve $y = xe^x$, the line x = 1, the line x = 3 and the x-axis.

The region *R* is rotated through 360 degrees about the *x*-axis.

Use integration by parts to find an exact value for the **volume** of the solid generated.

$\int_0^{\frac{\pi}{2}} e^{\cos x + 1} \sin x dx = e(e - 1)$	
$\int_0^{e} \sin x dx = e(e-1)$	
	(6)

$$I = \int_0^5 e^{\sqrt{(3x+1)}} \, \mathrm{d}x.$$

(a) Given that $y = e^{\sqrt{(3x+1)}}$, complete the table with the values of y corresponding to x = 2, 3 and 4.

x	0	1	2	3	4	5
у	e^1	e^2				e^4

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the original integral I, giving your answer to 4 significant figures.

(3)

(c) Use the substitution $t = \sqrt{3x + 1}$ to show that *I* may be expressed as $\int_a^b kte^t dt$, giving the values of *a*, *b* and *k*.

(5)

(d) Use integration by parts to evaluate this integral, and hence find the value of *I* correct to 4 significant figures, showing all the steps in your working.

(5)

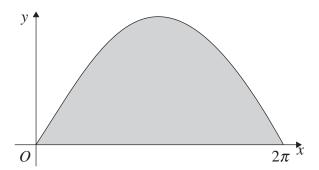
3. (a) Express $\frac{5x+3}{(2x-3)(x+2)}$ in partial fractions.

(3)

(b) Hence find the exact value of $\int_{2}^{6} \frac{5x+3}{(2x-3)(x+2)} dx$, giving your answer as a single logarithm.

(5)

(5)



The curve with equation $y = 3\sin\frac{x}{2}$, $0 \le x \le 2\pi$, is shown in Figure 1. The finite region enclosed by the curve and the *x*-axis is shaded.

(a) Find, by integration, the area of the shaded region.

(3)

This region is rotated through 2π radians about the *x*-axis.

(b) Find the volume of the solid generated.

1		
	nı	
٦	\mathbf{v}	

Use the substitution $x = \sin \theta$ to find the exact value of

$$\int_0^{\frac{1}{2}} \frac{1}{(1-x^2)^{\frac{3}{2}}} dx.$$

(7)

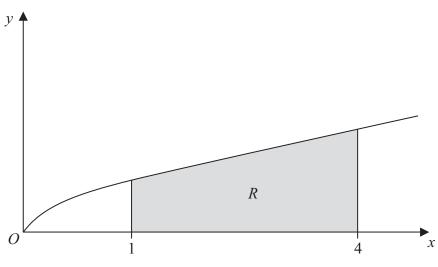


Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{x}{1 + \sqrt{x}}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation x = 1 and the line with equation x = 4.

(a) Complete the table with the value of y corresponding to x = 3, giving your answer to 4 decimal places.

(1)

х	1	2	3	4
у	0.5	0.8284		1.3333

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.

(3)

(c) Use the substitution $u = 1 + \sqrt{x}$, to find, by integrating, the exact area of R.

(8)

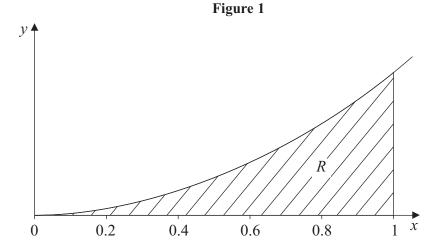


Figure 1 shows the graph of the curve with equation

$$y = xe^{2x}, \qquad x \geqslant 0.$$

The finite region R bounded by the lines x = 1, the x-axis and the curve is shown shaded in Figure 1.

(a) Use integration to find the exact value for the area of R.

(5)

(b) Complete the table with the values of y corresponding to x = 0.4 and 0.8.

X	0	0.2	0.4	0.6	0.8	1
$y = xe^{2x}$	0	0.29836		1.99207		7.38906

(1)

(c) Use the trapezium rule with all the values in the table to find an approximate value for this area, giving your answer to 4 significant figures.

(4)

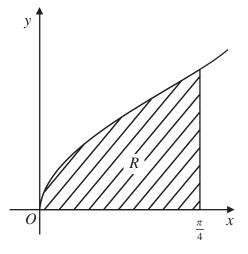


Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(\tan x)}$. The finite region R, which is bounded by the curve, the x-axis and the line $x = \frac{\pi}{4}$, is shown shaded in Figure 1.

(a) Given that $y = \sqrt{(\tan x)}$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{3\pi}{16}$, giving your answers to 5 decimal places.

х	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
у	0				1
					(3

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of the shaded region R, giving your answer to 4 decimal places.

(4)

The region R is rotated through 2π radians around the x-axis to generate a solid of revolution.

(c) Use integration to find an exact value for the volume of the solid generated.

(4)

2. (a) Given that $y = \sec x$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{\pi}{4}$.

Х	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
у	1			1.20269	

(2)

(b) Use the trapezium rule, with all the values for y in the completed table, to obtain an estimate for $\int_0^{\frac{\pi}{4}} \sec x \, dx$. Show all the steps of your working, and give your answer to 4 decimal places.

(3)

The exact value of $\int_0^{\frac{\pi}{4}} \sec x \, dx$ is $\ln(1+\sqrt{2})$.

(c) Calculate the % error in using the estimate you obtained in part (b).

(2)

Leave blank

2.

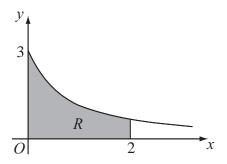


Figure 1

Figure 1 shows part of the curve $y = \frac{3}{\sqrt{(1+4x)}}$. The region R is bounded by the curve, the x-axis, and the lines x = 0 and x = 2, as shown shaded in Figure 1.

(a) Use integration to find the area of R.

(4)

The region *R* is rotated 360° about the *x*-axis.

(b) Use integration to find the exact value of the volume of the solid formed.

(5)

(5)

3.

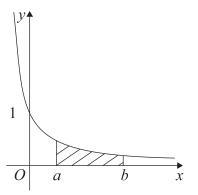


Figure 2

The curve shown in Figure 2 has equation $y = \frac{1}{(2x+1)}$. The finite region bounded by the

curve, the *x*-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the *x*-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

$\int_0^1 \frac{2^x}{(2^x + 1)^2} \mathrm{d}x.$	
	(6

$\int_{1}^{5} \frac{3x}{\sqrt{(2x-1)}} \mathrm{d}x.$				
	(8)			

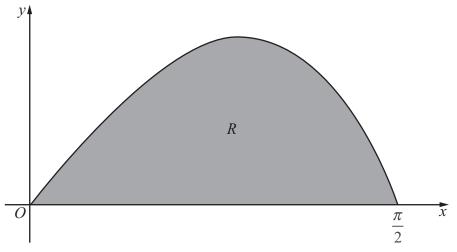


Figure 3

Figure 3 shows a sketch of the curve with equation $y = \frac{2\sin 2x}{(1+\cos x)}$, $0 \le x \le \frac{\pi}{2}$.

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2\sin 2x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, dx = 4\ln(1+\cos x) - 4\cos x + k$$

where k is a constant.

(5)

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

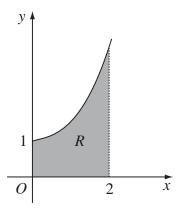


Figure 1

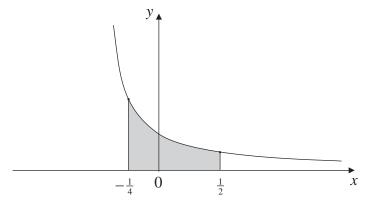
Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

х	0	0.4	0.8	1.2	1.6	2
у	e^0	$e^{0.08}$		e ^{0.72}		e^2

(1)

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.



The curve with equation $y = \frac{1}{3(1+2x)}$, $x > -\frac{1}{2}$, is shown in Figure 1.

The region bounded by the lines $x = -\frac{1}{4}$, $x = \frac{1}{2}$, the x-axis and the curve is shown shaded in Figure 1.

This region is rotated through 360 degrees about the *x*-axis.

(a) Use calculus to find the exact value of the volume of the solid generated.

(5)

Figure 2

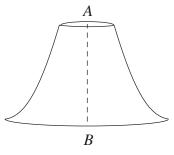


Figure 2 shows a paperweight with axis of symmetry AB where AB = 3 cm. A is a point on the top surface of the paperweight, and B is a point on the base of the paperweight. The paperweight is geometrically similar to the solid in part (a).

(b) Find the volume of this paperweight.

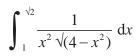
(2)

(a) Use integration by parts to find $\int x \sin 3x dx$.	(3)	
(b) Using your answer to part (a), find $\int x^2 \cos 3x dx$.	(3)	

(a) Use integration by parts to find $\int x e^x dx$.	(3)
(b) Hence find $\int x^2 e^x dx$.	(3)

3.	(a) Find $\int x \cos 2x dx$.		
	(b) Hence, using the identity $\cos 2x = 2\cos^2 x - 1$, deduce $\int x \cos^2 x dx$.	(3)	

8. (a) Using the substitution $x = 2\cos u$, or otherwise, find the exact value of



(7)

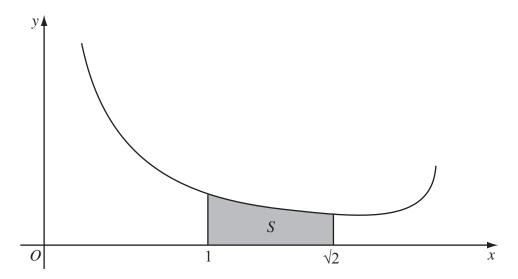


Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = \frac{4}{x(4-x^2)^{\frac{1}{4}}}$, 0 < x < 2.

The shaded region S, shown in Figure 3, is bounded by the curve, the x-axis and the lines with equations x = 1 and $x = \sqrt{2}$. The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.

(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.

Leave

blank

7.

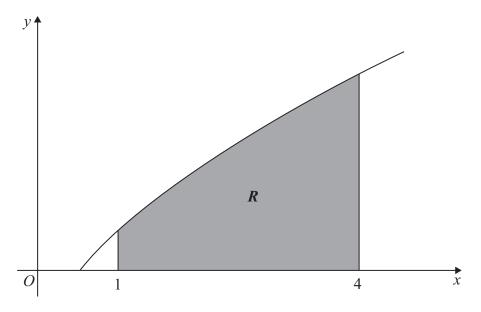


Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^{\frac{1}{2}} \ln 2x$.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines x = 1 and x = 4

(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.

(4)

(b) Find $\int x^{\frac{1}{2}} \ln 2x \, dx$.

(4)

(c) Hence find the exact area of R, giving your answer in the form $a \ln 2 + b$, where a and b are exact constants.

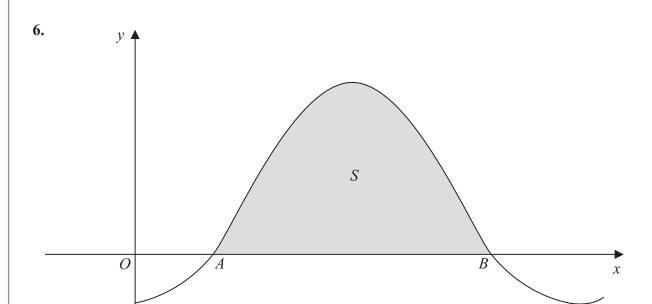


Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = 1 - 2\cos x$, where x is measured in radians. The curve crosses the x-axis at the point A and at the point B.

(a) Find, in terms of π , the x coordinate of the point A and the x coordinate of the point B. (3)

The finite region S enclosed by the curve and the x-axis is shown shaded in Figure 3. The region S is rotated through 2π radians about the x-axis.

(b) Find, by integration, the exact value of the volume of the solid generated. (6)

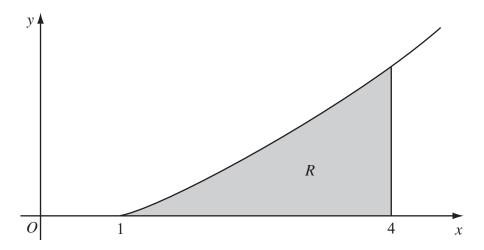


Figure 1

Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 4.

The table shows corresponding values of x and y for $y = x \ln x$.

х	1	1.5	2	2.5	3	3.5	4
у	0	0.608			3.296	4.385	5.545

(a) Complete the table with the values of y corresponding to x = 2 and x = 2.5, giving your answers to 3 decimal places.

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

(4)

- (c) (i) Use integration by parts to find $\int x \ln x \, dx$.
 - (ii) Hence find the exact area of R, giving your answer in the form $\frac{1}{4}(a \ln 2 + b)$, where a and b are integers.

(7)

(i) Find $\int \ln(\frac{x}{2}) dx$.	(4
(ii) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx$.	
J $\overline{4}$	(5

6. (a) Find $\int \tan^2 x \, dx$.

(2)

(b) Use integration by parts to find $\int \frac{1}{x^3} \ln x \, dx$.

(c) Use the substitution $u = 1 + e^x$ to show that

 $\int \frac{e^{3x}}{1+e^x} dx = \frac{1}{2}e^{2x} - e^x + \ln(1+e^x) + k,$

where k is a constant.

- (7
•	/
_	-

$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} \, \mathrm{d}x$$

(a) Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of y corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

X	2	3	4	5
у	0.2		0.1745	

(2)

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer to 3 decimal places.

(4)

(c) Using the substitution $x = (u-4)^2 + 1$, or otherwise, and integrating, find the exact value of I.

(8)

6. (a) Find $\int \sqrt{(5-x)} dx$.

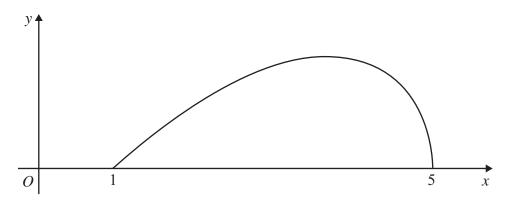


Figure 3

Figure 3 shows a sketch of the curve with equation

$$y = (x - 1) \sqrt{(5 - x)}, \quad 1 \le x \le 5$$

(b) (i) Using integration by parts, or otherwise, find

$$\int (x-1)\sqrt{(5-x)}\,\mathrm{d}x$$

(4)

(ii) Hence find $\int_1^5 (x-1)\sqrt{(5-x)} dx$.

1	1

2. (a) Use in	tegration to	find

$$\int \frac{1}{x^3} \ln x \, \mathrm{d}x$$

(5)

$$\int_{1}^{2} \frac{1}{x^{3}} \ln x \, \mathrm{d}x$$

(2)

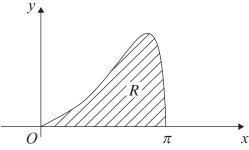


Figure 1

The curve shown in Figure 1 has equation $y = e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
у	0			8.87207	0

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places.

(4)
\ -/

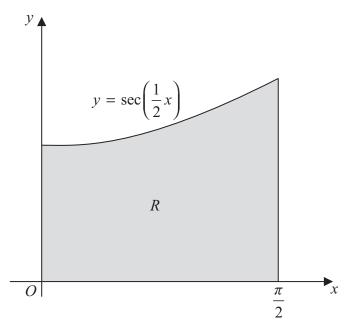


Figure 1

Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line $x = \frac{\pi}{2}$ and the curve with equation

$$y = \sec\left(\frac{1}{2}x\right), \quad 0 \leqslant x \leqslant \frac{\pi}{2}$$

The table shows corresponding values of x and y for $y = \sec\left(\frac{1}{2}x\right)$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
y	1	1.035276		1.414214

(a) Complete the table above giving the missing value of y to 6 decimal places.

(1)

(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

(3)

Region R is rotated through 2π radians about the x-axis.

(c) Use calculus to find the exact volume of the solid formed.

(4)

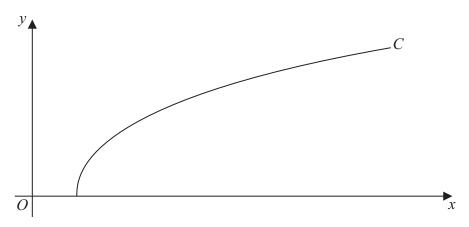


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 27 \sec^3 t$$
, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$

- (a) Find the gradient of the curve C at the point where $t = \frac{\pi}{6}$
- (b) Show that the cartesian equation of C may be written in the form

$$y = (x^{\frac{2}{3}} - 9)^{\frac{1}{2}},$$
 $a \le x \le b$

stating the values of a and b.

x = 125

Figure 3

The finite region R which is bounded by the curve C, the x-axis and the line x = 125 is shown shaded in Figure 3. This region is rotated through 2π radians about the x-axis to form a solid of revolution.

(c) Use calculus to find the exact value of the volume of the solid of revolution.

(5)

(4)

8. (a) Using the identity $\cos 2\theta = 1 - 2\sin^2\theta$, find $\int \sin^2\theta \, d\theta$.

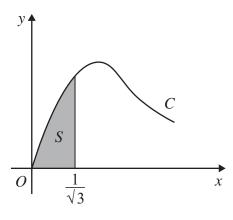


Figure 4

Figure 4 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = 2\sin 2\theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The finite shaded region *S* shown in Figure 4 is bounded by *C*, the line $x = \frac{1}{\sqrt{3}}$ and the *x*-axis. This shaded region is rotated through 2π radians about the *x*-axis to form a solid of revolution.

(b) Show that the volume of the solid of revolution formed is given by the integral

$$k \int_0^{\frac{\pi}{6}} \sin^2 \theta \, d\theta$$

where k is a constant.

(5)

(c) Hence find the exact value for this volume, giving your answer in the form $p\pi^2 + q\pi\sqrt{3}$, where p and q are constants.

(3)

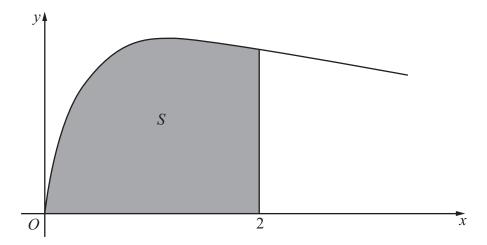


Figure 1

Figure 1 shows the curve with equation

$$y = \sqrt{\left(\frac{2x}{3x^2 + 4}\right)}, \ x \geqslant 0$$

The finite region S, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The region *S* is rotated 360° about the *x*-axis.

Use integration to find the exact value of the volume of the solid generated, giving your answer in the form $k \ln a$, where k and a are constants.

(5)

3.
$$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$$

(a) Find the values of the constants A, B and C.

(4)

(b) (i) Hence find $\int f(x) dx$.

(3)

(ii) Find $\int_0^2 f(x) dx$ in the form $\ln k$, where k is a constant.

(3)

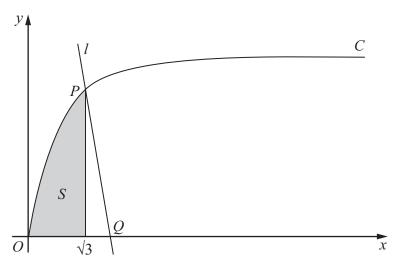


Figure 3

Figure 3 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = \sin \theta$, $0 \le \theta < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $\left(\sqrt{3}, \frac{1}{2}\sqrt{3}\right)$.

(a) Find the value of θ at the point P.

(2)

The finite shaded region *S* shown in Figure 3 is bounded by the curve *C*, the line $x = \sqrt{3}$ and the *x*-axis. This shaded region is rotated through 2π radians about the *x*-axis to form a solid of revolution.

(c) Find the volume of the solid of revolution, giving your answer in the form $p\pi\sqrt{3+q\pi^2}$, where p and q are constants.

(7)

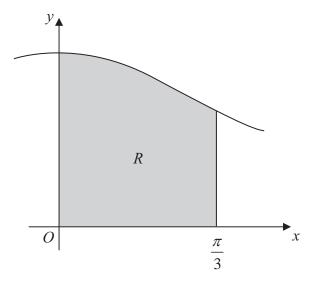


Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(0.75 + \cos^2 x)}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation $x = \frac{\pi}{3}$.

(a) Complete the table with values of y corresponding to $x = \frac{\pi}{6}$ and $x = \frac{\pi}{4}$.

х	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
у	1.3229	1.2973			1

(b) Use the trapezium rule

(i) with the values of y at x = 0, $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ to find an estimate of the area of R. Give your answer to 3 decimal places.

(ii) with the values of y at x = 0, $x = \frac{\pi}{12}$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ to find a further estimate of the area of R. Give your answer to 3 decimal places.

(6)

(2)

$\int_0^{\frac{\pi}{2}} x \sin 2x dx$	
J 0	(6)

6. The curve C has parametric equations

$$x = \ln t$$
, $y = t^2 - 2$, $t > 0$

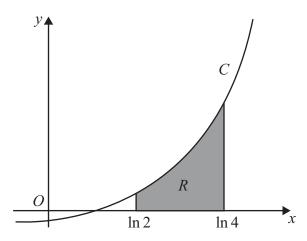


Figure 1

The finite area R, shown in Figure 1, is bounded by C, the x-axis, the line $x = \ln 2$ and the line $x = \ln 4$. The area R is rotated through 360° about the x-axis.

(c) Use calculus to find the exact volume of the solid generated.

(6)

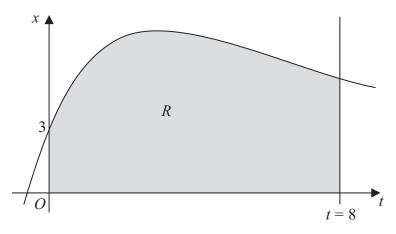


Figure 1

Figure 1 shows part of the curve with equation $x = 4te^{-\frac{1}{3}t} + 3$. The finite region R shown shaded in Figure 1 is bounded by the curve, the x-axis, the t-axis and the line t = 8.

(a) Complete the table with the value of x corresponding to t = 6, giving your answer to 3 decimal places.

t	0	2	4	6	8
X	3	7.107	7.218		5.223

(1)

(b) Use the trapezium rule with all the values of x in the completed table to obtain an estimate for the area of the region R, giving your answer to 2 decimal places.

(3)

(c) Use calculus to find the exact value for the area of R.

(6)

(d) Find the difference between the values obtained in part (b) and part (c), giving your answer to 2 decimal places.

(1)

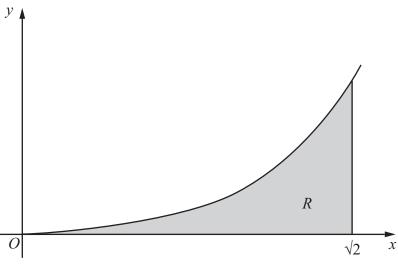


Figure 2

Figure 2 shows a sketch of the curve with equation $y = x^3 \ln(x^2 + 2)$, $x \ge 0$. The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line $x = \sqrt{2}$.

The table below shows corresponding values of x and y for $y = x^3 \ln(x^2 + 2)$.

λ	ĸ	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{3\sqrt{2}}{4}$	√2
J	V	0		0.3240		3.9210

(a) Complete the table above giving the missing values of y to 4 decimal places.

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.

(3)

(c) Use the substitution $u = x^2 + 2$ to show that the area of R is

$$\frac{1}{2} \int_{2}^{4} (u - 2) \ln u \, du \tag{4}$$

(d) Hence, or otherwise, find the exact area of R.

(6)

1.
$$f(x) = \frac{1}{x(3x-1)^2} = \frac{A}{x} + \frac{B}{(3x-1)} + \frac{C}{(3x-1)^2}$$

(a) Find the values of the constants A, B and C.

(4)

- (b) (i) Hence find $\int f(x) dx$.
 - (ii) Find $\int_{1}^{2} f(x) dx$, leaving your answer in the form $a + \ln b$, where a and b are constants.

(6)

(a) Find $\int x^2 e^x dx$.	(5)
(b) Hence find the exact value of $\int_0^1 x^2 e^x dx$.	(2)
	. ,

Using the substitution $u = 2 + \sqrt{(2x + 1)}$, or other suitable substitutions, find the exact 3. value of

$$\int_0^4 \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x$$

giving your answer in the form $A + 2 \ln B$, where A is an integer and B is a positive constant.

(8)