1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Makes an attempt to factor all the quadratics on the left-hand side of the identity.	M1	2.2a	5th Simplify
	Correctly factors each expression on the left-hand side of the identity: $\frac{(x-6)(x+6)}{(x-5)(x-6)} \cdot \frac{(5-x)(5+x)}{Ax^2 + Bx + C} \cdot \frac{(3x-1)(2x+3)}{(3x-1)(x+6)}$	A1	2.2a	algebraic fractions.
	Successfully cancels common factors: $\frac{(-1)(5+x)(2x+3)}{Ax^2 + Bx + C} \circ \frac{x+5}{(-1)(x-6)}$	M1	1.1b	
	States that $Ax^2 + Bx + C^{\circ}(2x + 3)(x - 6)$	M1	1.1b	
	States or implies that $A = 2$, $B = -9$ and $C = -18$	A1	1.1b	

(5 marks)

Notes

Alternative method

Makes an attempt to substitute x = 0 (M1)

Finds C = -18 (**A1**)

Substitutes x = 1 to give A + B = -7 (M1)

Substitutes x = -1 to give A - B = 11 (M1)

Solves to get A = 2, B = -9 and C = -18 (A1)

2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Begins the proof by assuming the opposite is true.	B1	3.1	7th
	'Assumption: there exists a number n such that n^2 is even and n is odd.'			Complete proofs using proof by contradiction.
	Defines an odd number (choice of variable is not important) and successfully calculates n^2	M1	2.2a	contradiction.
	Let $2k + 1$ be an odd number.			
	$n^2 = (2k+1)^2 = 4k^2 + 4k + 1$			
	Factors the expression and concludes that this number must be odd.	M1	1.1b	
	$4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, so n^2 is odd.			
	Makes a valid conclusion.	B1	2.4	
	This contradicts the assumption n^2 is even. Therefore if n^2 is even, n must be even.	_		
		(4)		

(b)	Begins the proof by assuming the opposite is true.	B1	3.1	7th
	'Assumption: $\sqrt{2}$ is a rational number.'			Complete proofs using proof by
	Defines the rational number:	M1	2.2a	contradiction.
	$\sqrt{2} = \frac{a}{b}$ for some integers a and b , where a and b have no common factors.			
	Squares both sides and concludes that <i>a</i> is even:	M1	1.1b	
	$\sqrt{2} = \frac{a}{b} \triangleright 2 = \frac{a^2}{b^2} \triangleright a^2 = 2b^2$			
	From part a : a^2 is even implies that a is even.			
	Further states that if a is even, then $a = 2c$. Choice of variable is not important.	M1	1.1b	
	Makes a substitution and works through to find $b^2 = 2c^2$, concluding that b is also even.	M1	1.1b	
	$a^2 = 2b^2 \triangleright (2c)^2 = 2b^2 \triangleright 4c^2 = 2b^2 \triangleright b^2 = 2c^2$			
	From part a : b^2 is even implies that b is even.			
	Makes a valid conclusion.	B1	2.4	
	If a and b are even, then they have a common factor of 2, which contradicts the statement that a and b have no common factors.			
	Therefore $\sqrt{2}$ is an irrational number.			
		(6)		

(10 marks)

3	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Correctly states that $ (1+ax)^{-2} = 1 + (-2)(ax) + \frac{(-2)(-3)(ax)^2}{2} + \frac{(-2)(-3)(-4)(ax)^3}{6} + \dots $	M1	2.2a	6th Understand the binomial theorem for rational n.
	Simplifies to obtain $(1+ax)^{-2} = 1 - 2ax + 3a^2x^2 - 4a^3x^3$	M1	1.1b	
	Deduces that $3a^2 = 75$	M1	2.2a	
	Solves to find $a = \pm 5$	A1	1.1b	
		(4)		
(b)	$a = 5 \triangleright -4(125)x^3 = -500x^3$. Award mark for -500 seen.	A1	1.1b	6th
	$a = -5 \triangleright -4(-125)x^3 = 500x^3$. Award mark for 500 seen.	A1	1.1b	Understand the binomial theorem for rational n.
		(2)		

(6 marks)

4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	States $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x+h-x}$	M1	3.1b	5th Differentiate
	Makes correct substitutions: $f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$	M1	1.1b	simple trigonometric functions.
	Uses the appropriate trigonometric addition formula to write $f'(x) = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$	M1	2.2a	
	Groups the terms appropriately $f'(x) = \lim_{h \to 0} \left(\left(\frac{\cos h - 1}{h} \right) \sin x + \left(\frac{\sin h}{h} \right) \cos x \right)$	A1	2.2a	
		(4)		
(b)	Explains that as $h \to 0$, $\frac{\cos h - 1}{h} \to 0$ and $\frac{\sin h}{h} \to 1$	M1	3.2b	5th Differentiate
	Concludes that this leaves $0 \times \sin x + 1 \times \cos x$ So if $f(x) = \sin x$, $f'(x) = \cos x$	A1	3.2b	simple trigonometric functions.
		(2)		

(6 marks)

Notes

5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Makes an attempt to find $\int (10-2x)^4 dx$. Raising the power by	M1	1.1b	6 th
	1 would constitute an attempt.			Integrate using the reverse chain
	Correctly states $\int (10-2x)^4 dx = -\frac{1}{10} (10-2x)^5$	A1	2.2a	rule.
	States $-\frac{1}{10}(2)^5 + \frac{1}{10}(10 - 2a)^5 = \frac{211}{10}$	M1 ft	1.1b	
	Makes an attempt to solve this equation. For example, $\frac{1}{10} (10 - 2a)^5 = \frac{243}{10} \text{ or } (10 - 2a)^5 = 243 \text{ is seen.}$	M1 ft	1.1b	
	Solves to find $a = \frac{7}{2}$	A1 ft	1.1b	

(5 marks)

Notes

Student does not need to state '+C' in an answer unless it is the final answer to an indefinite integral. Award ft marks for a correct answer using an incorrect initial answer.

6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Rearranges $x^4 - 8x^2 + 2 = 0$ to find $x^2 = \frac{x^4 + 2}{8}$	M1	1.1b	5th Understand the
	States $x = \sqrt{\frac{x^4 + 2}{8}}$ and therefore $a = \frac{1}{8}$ and $b = \frac{1}{4}$ or states	A1	1.1b	concept of roots of equations.
	$x = \sqrt{\frac{1}{8}x^4 + \frac{1}{4}}$			
		(2)		
(b)	Attempts to use iterative procedure to find subsequent values.	M1	1.1b	6th
	Correctly finds: $x_1 = 0.9396$ $x_2 = 0.5894$ $x_3 = 0.5149$ $x_4 = 0.5087$	A1	1.1b	Solve equations approximately using the method of iteration.
		(2)		
(c)	Demonstrates an understanding that the two values of $f(x)$ to be calculated are for $x = -2.7815$ and $x = -2.7825$.	M1*	2.2a	5th Use a change of
	Finds $f(-2.7815) = -0.0367$ and $f(-2.7825) = (+)0.00485$	M1	1.1b	sign to locate roots.
	Change of sign and continuous function in the interval [-2.7825, -2.7815]⇒root	A1	2.4	
		(3)		

(7 marks)

Notes

- **(b)** Award M1 if finds at least one correct answer.
- (c) Any two numbers that produce a change of sign, where one is greater than -2.782 and one is less than -2.782, and both numbers round to -2.782 to 3 decimal places, are acceptable. Minimum required is that answer states there is a sign change in the interval and that this implies a root in the given interval.

Pearson Edexcel AS and A level Mathematics

7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Makes an attempt to find $fg(x)$. For example, writing $fg(x) = e^{2\ln(x+1)} + 4$	M1	2.2a	5th Find composite functions.
	Uses the law of logarithms to write $fg(x) = e^{\ln(x+1)^2} + 4$	M1	1.1b	Tunetions.
	States that $fg(x) = (x+1)^2 + 4$	A1	1.1b	
	States that the range is $y > 4$ or $fg(x) > 4$	B1	3.2b	
		(4)		
(b)	States that $(x+1)^2 + 4 = 85$	M1	1.1b	5th Find the domain
	Makes an attempt to solve for x , including attempting to take the square root of both sides of the equation. For example, $x+1=\pm 9$	M1	1.1b	and range of composite functions.
	States that $x = 8$. Does not need to state that $x \neq -10$, but do not award the mark if $x = -10$ is stated.	A1	3.2b	
		(3)		

(7 marks)

8	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Forms a pair of simultaneous equations, using the given values	M1	2.2a	4th
	a+3d=98 $a+10d=56$			Understand simple arithmetic sequences.
	Correctly solves to find $d = -6$	A1	1.1b	1
	Finds $a = 116$	A1	1.1b	
	Uses $a_n = a + (n-1)d$ to find $a_{20} = 116 + 19 \times (-6) = 2$	A1	1.1b	
		(4)		
(b)	Uses the sum of an arithmetic series to form the equation	M1 ft	2.2a	5th
	$\frac{n}{2} \Big[232 + (n-1)(-6) \Big] = 78$			Understand simple arithmetic series.
	Successfully multiplies out the brackets and simplifies. Fully simplified quadratic of $3n^2 - 119n + 78 = 0$ is seen or $6n^2 - 238n + 156 = 0$ is seen.	M1 ft	1.1b	
	Correctly factorises: $(3n-2)(n-39)=0$	M1 ft	1.1b	
	States that $n = 39$ is the correct answer.	A1	1.1b	
		(4)		

(8 marks)

Notes

- (a) Can use elimination or substitution to solve the simultaneous equations.
- (b) Award method marks for a correct attempt to solve the equation using their incorrect values from part a.

9	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	States that $\sin \theta = \frac{BD}{1}$ and concludes that $BD = \sin Q$	M1	3.1	6th Prove
	States that $\cos \theta = \frac{AD}{1}$ and concludes that $AD = \cos Q$	M1	3.1	$\sec^2 x = 1 + \tan^2 x$ and $\csc^2 x = 1 + \cot^2 x.$
	States that $\Theta DBC = q$	M1	2.2a	
	States that $\tan \theta = \frac{DC}{\sin \theta}$ and concludes that $DC = \frac{\sin^2 \theta}{\cos \theta}$ oe.	M1	3.1	
	States that $\cos \theta = \frac{\sin \theta}{BC}$ and concludes that $BC = \tan q$ oe.	M1	3.1	
	Recognises the need to use Pythagoras' theorem. For example, $AB^2 + BC^2 = AC^2$	M1	2.2a	
	Makes substitutions and begins to manipulate the equation: $1 + \tan^2 \theta = \left(\frac{\cos \theta}{1} + \frac{\sin^2 \theta}{\cos \theta}\right)^2$ $1 + \tan^2 \theta = \left(\frac{\cos^2 \theta + \sin^2 \theta}{\cos \theta}\right)^2$	M1	1.1b	
	Uses a clear algebraic progression to arrive at the final answer: $1 + \tan^2 \theta = \left(\frac{1}{\cos \theta}\right)^2$	A1	1.1b	
	$1 + \tan^2 q = \sec^2 q$			

(8 marks)

10

10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Makes an attempt to find the resultant force by adding the three force vectors together.	M1	3.1a	6th Solve
	Finds $R = (6\mathbf{i} + 3\mathbf{j} + 3\mathbf{k})N$	A1	1.1b	contextualised problems in mechanics using 3D vectors.
		(2)		
(b)	States $F = ma$ or writes $(6\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}) = 3(a)$	M1	3.1a	6th
	Finds $a = (2\mathbf{i} + \mathbf{j} + \mathbf{k}) \text{ms}^{-2}$	A1	1.1b	Solve contextualised problems in mechanics using 3D vectors.
		(2)		
(c)	Demonstrates an attempt to find $ a $	M1	3.1a	6th
	For example, $ a = \sqrt{(2)^2 + (1)^2 + (1)^2}$			Solve contextualised problems in
	Finds $ a = \sqrt{6} \text{ m s}^{-2}$	A1	1.1b	mechanics using 3D vectors.
		(2)		
(d)	States $s = ut + \frac{1}{2}at^2$	M1	3.1a	6th Solve
	Makes an attempt to substitute values into the equation. $s = (0)(10) + \frac{1}{2}(\sqrt{6})(10)^2$	M1 ft	1.1b	contextualised problems in mechanics using 3D vectors.
	Finds $s = 50\sqrt{6} \text{ m}$	A1 ft	1.1b	
		(3)		

(9 marks)

Notes

(d) Award ft marks for a correct answer to part d using their incorrect answer from part c.

Pearson Edexcel AS and A level Mathematics

11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Equating the coefficients of x^4 : $A = 5$	A1	2.2a	6th
	Equating the coefficients of x^3 : $B = -4$	A1	1.1b	Solve problems using the remainder theorem linked to improper algebraic fractions.
	Equating the coefficients of x^2 : $2A + C = 17$, $C = 7$	A1	1.1b	
	Equating the coefficients of x: $2B + D = -5$, $D = 3$	A1	1.1b	
	Equating constant terms: $2C + E = 7$, $E = -7$	A1	1.1b	

(5 marks)

12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	States that $A(2x+3) + B(1-4x) \equiv 21-14x$	M1	1.1b	6th Decompose algebraic fractions into partial fractions – linear factors.
	Equates the various terms. Equating $xs 2A - 4B = -14$ Equating numbers $3A + B = 21$	M1	1.1b	
	Multiplies or or both of the equations in an effort to equate one of the two variables.	M1	1.1b	
	Finds $A = 5$	A1	1.1b	
	Find $B = 6$	A1	1.1b	
		(5)		
(b)	Writes $\int_{-1}^{0} \left(\frac{5}{1 - 4x} + \frac{6}{2x + 3} \right) dx$ as $\int_{-1}^{0} \left(5(1 - 4x)^{-1} + 6(2x + 3)^{-1} \right) dx$	M1 ft	2.2a	6th Integrate functions using the reverse chain rule.
	Makes an attempt to integrate the expression. Attempt would constitute the use of logarithms.	M1 ft	2.2a	
	Integrates the expression to find $\left[-\frac{5}{4} \ln(1-4x) + 3\ln(2x+3) \right]_{-1}^{0}$	A1 ft	1.1b	
	Makes an attempt to substitute the limits $\left(-\frac{5}{4}\ln(1-4(0))+3\ln(2(0)+3)\right)$ $-\left(-\frac{5}{4}\ln(1-4(-1))+3\ln(2(-1)+3)\right)$	M1 ft	1.1b	
	Simplifies to find $\ln 27 + \frac{5}{4} \ln 5$ o.e.	A1 ft	1.1b	
		(5)		

(10 marks)

Notes

Award ft marks for a correct answer to part b using incorrect values from part a.

Pearson Edexcel AS and A level Mathematics

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Shows or implies that if $y = 0$, $t = 1$	M1	1.1b	7th
	Finds the coordinates of P . $t = 1 \Rightarrow x = 3$ P(3,0)	A1	1.1b	Solve coordinate geometry problems involving parametric equations.
		(2)		
(b)	Attempts to find a cartesian equation of the curve. For example, $t = x - 2$ is substituted into $y = \frac{t - 1}{t + 2}$	M1	2.2a	7th Solve coordinate geometry problems involving parametric equations.
	Correctly finds the cartesian equation of the curve $y = \frac{x-3}{x}$ Accept any equivalent answer. For example, $y = 1 - \frac{3}{x}$	A1	1.1b	
		(2)		
(c)	Finds $\frac{dy}{dx} = 3x^{-2} = \frac{3}{x^2}$	M1	2.2a	7th Solve coordinate geometry problems involving parametric equations.
	Substitutes $t = -1$ to find $x = 1$ and $\frac{dy}{dx} = \frac{3}{(1)^2} = 3$	M1	1.1b	
	Finds the gradient of the normal $m_N = -\frac{1}{3}$	M1	1.1b	
	Substitutes $t = -1$ to find $x = 1$ and $y = -2$	A1	1.1b	
	Makes an attempt to find the equation of the normal. For example, $y + 2 = -\frac{1}{3}(x-1)$ is seen.	M1	1.1b	
	States fully correct answer $x + 3y + 5 = 0$	A1	1.1b	
		(6)		

(d)	Substitutes $x = t + 2$ and $y = \frac{t-1}{t+2}$ into $x + 3y + 5 = 0$ obtaining $t + 2 + 3\left(\frac{t-1}{t+2}\right) + 5 = 0$	M1 ft	2.2a	7th Solve coordinate geometry problems involving parametric equations.
	Manipulates and simplifies this equation to obtain $t^2 + 12t + 11 = 0$	M1 ft	1.1b	
	Factorises and solves to find $t = -1$ or $t = -11$	M1 ft	1.1b	
	Substitutes $t = -11$ to find $x = -9$ and $y = \frac{4}{3}$, i.e. $\left(-9, \frac{4}{3}\right)$	A1 ft	1.1b	
		(4)		

(14 marks)

Notes

(c) Award ft marks for correct answer using incorrect values from part b.