1. The region bounded by the curve $y = x^2 - 2x$ and the x-axis is rotated through 2π radians about the x-axis.

Find the volume of the solid formed, giving your answer in terms of π .

2. Use the substitution $u = 1 - x^{\frac{1}{2}}$ to find

$$\int \frac{1}{1-x^{\frac{1}{2}}} \, \mathrm{d}x. \tag{6}$$

(6)

3. A curve has the equation

$$2\sin 2x - \tan y = 0.$$

- (a) Find an expression for $\frac{dy}{dx}$ in its simplest form in terms of x and y. (5)
- (b) Show that the tangent to the curve at the point $(\frac{\pi}{6}, \frac{\pi}{3})$ has the equation

$$y = \frac{1}{2}x + \frac{\pi}{4}. (3)$$

4.

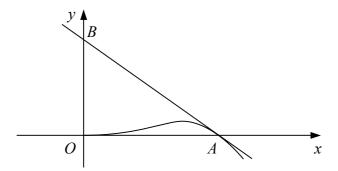


Figure 1

Figure 1 shows the curve with parametric equations

$$x = a\sqrt{t}, \quad y = at(1-t), \quad t \ge 0,$$

where a is a positive constant.

(a) Find
$$\frac{dy}{dx}$$
 in terms of t. (3)

The curve meets the x-axis at the origin, O, and at the point A. The tangent to the curve at A meets the y-axis at the point B as shown.

(b) Show that the area of triangle OAB is a^2 . (6)

5. The gradient at any point (x, y) on a curve is proportional to \sqrt{y} .

Given that the curve passes through the point with coordinates (0, 4),

(a) show that the equation of the curve can be written in the form

$$2\sqrt{y} = kx + 4,$$

where k is a positive constant.

(5)

(4)

Given also that the curve passes through the point with coordinates (2, 9),

(b) find the equation of the curve in the form y = f(x).

6.

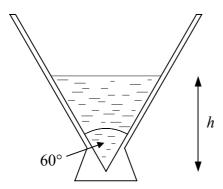


Figure 2

Figure 2 shows a vertical cross-section of a vase.

The inside of the vase is in the shape of a right-circular cone with the angle between the sides in the cross-section being 60° . When the depth of water in the vase is h cm, the volume of water in the vase is V cm³.

(a) Show that
$$V = \frac{1}{9} \pi h^3$$
. (3)

The vase is initially empty and water is poured in at a constant rate of 120 cm³ s⁻¹.

- (b) Find, to 2 decimal places, the rate at which h is increasing
 - (i) when h = 6,
 - (ii) after water has been poured in for 8 seconds. (7)

Turn over

- 7. Relative to a fixed origin, the points A and B have position vectors $\begin{pmatrix} -4\\1\\3 \end{pmatrix}$ and $\begin{pmatrix} -3\\6\\1 \end{pmatrix}$ respectively.
 - (a) Find a vector equation for the line l_1 which passes through A and B. (2) The line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ -7 \\ 9 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}.$$

- (b) Show that lines l_1 and l_2 do not intersect. (5)
- (c) Find the position vector of the point C on l_2 such that $\angle ABC = 90^{\circ}$. (6)

8.
$$f(x) = \frac{x(3x-7)}{(1-x)(1-3x)}, |x| < \frac{1}{3}.$$

(a) Find the values of the constants A, B and C such that

$$f(x) = A + \frac{B}{1 - x} + \frac{C}{1 - 3x}.$$
 (4)

(b) Evaluate

$$\int_0^{\frac{1}{4}} f(x) dx,$$

giving your answer in the form $p + \ln q$, where p and q are rational. (5)

(c) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (5)

END

C4 Paper J - Marking Guide

1.
$$x(x-2) = 0$$
, $x = 0, 2$: crosses x-axis at $(0, 0)$ and $(2, 0)$

volume =
$$\pi \int_0^2 (x^2 - 2x)^2 dx$$

= $\pi \int_0^2 (x^4 - 4x^3 + 4x^2) dx$
= $\pi \left[\frac{1}{5} x^5 - x^4 + \frac{4}{3} x^3 \right]_0^2$
= $\pi \left\{ \left(\frac{32}{5} - 16 + \frac{32}{3} \right) - (0) \right\} = \frac{16}{15} \pi$

A1

2.
$$u = 1 - x^{\frac{1}{2}} \implies x = (1 - u)^2, \quad \frac{dx}{du} = -2(1 - u) = 2u - 2$$

$$I = \int \frac{1}{u} \times (2u - 2) \, du = \int (2 - \frac{2}{u}) \, du$$

= 2u - 2 \ln |u| + c

M1 A1

$$= 2(1 - x^{\frac{1}{2}}) - 2 \ln |1 - x^{\frac{1}{2}}| + c$$

(6)

3. (a)
$$4\cos 2x - \sec^2 y \frac{dy}{dx} = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\cos 2x\cos^2 y$$

(b) grad =
$$4 \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{2}$$

$$\therefore y - \frac{\pi}{3} = \frac{1}{2}(x - \frac{\pi}{6})$$

B1

$$y - \frac{\pi}{3} = \frac{1}{2}x - \frac{\pi}{12}$$
$$y = \frac{1}{2}x + \frac{\pi}{12}$$

$$y = \frac{1}{2}x + \frac{\pi}{4}$$

4. (a)
$$\frac{dx}{dt} = \frac{1}{2}at^{-\frac{1}{2}}, \quad \frac{dy}{dt} = a(1-2t)$$

$$\frac{dy}{dx} = \frac{a(1-2t)}{\frac{1}{2}at^{-\frac{1}{2}}} = 2\sqrt{t} (1-2t)$$

(b)
$$y = 0 \implies t = 0 \text{ (at } O) \text{ or } 1 \text{ (at } A)$$

 $t = 1, x = a, y = 0, \text{ grad } = -2$

$$\therefore y - 0 = -2(x - a)$$

at B,
$$x = 0$$
 : $y = 2a$
area = $\frac{1}{2} \times a \times 2a = a^2$

$$5. (a) \frac{\mathrm{d}y}{\mathrm{d}x} = k\sqrt{y}$$

$$\int y^{-\frac{1}{2}} dy = \int k dx$$

$$2y^{\frac{1}{2}} = kx + c$$

$$(0,4) \Rightarrow 4 = c$$

$$\therefore 2\sqrt{y} = kx + 4$$

(b)
$$(2, 9) \Rightarrow 6 = 2k + 4, \quad k = 1$$

 $\therefore 2\sqrt{y} = x + 4, \quad \sqrt{y} = \frac{1}{2}(x + 4)$

$$\therefore 2\sqrt{y} = x + 4, \qquad \sqrt{y} = \frac{1}{2}(x + 4)$$
$$y = \frac{1}{4}(x + 4)^2$$

$$y = \frac{1}{4}(x+4)$$

6. (a) let radius =
$$r$$
, \therefore tan $30^\circ = \frac{1}{\sqrt{3}} = \frac{r}{h}$, $r = \frac{h}{\sqrt{3}}$ MI

$$r = \frac{1}{3}\pi r^3 h = \frac{1}{3}\pi h \times \frac{h^2}{3} = \frac{1}{9}\pi h^3$$
 MI A1

(b) (i) $\frac{dV}{dt} = 120$, $\frac{dV}{dh} = \frac{1}{3}\pi h^2$ B1

$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}, \quad 120 = \frac{1}{3}\pi h^2 \frac{dh}{dt}, \quad \frac{dh}{dt} = \frac{360}{\pi h^2}$$
 MI A1

when $h = 6$, $\frac{dd}{dt} = 3.18$ cm s⁻¹ (2dp) MI A1

(ii) $V = 8 \times 120 = 960 = \frac{1}{9}\pi h^2 \therefore h = \sqrt[3]{\frac{98 \times 960}{\pi}} = 14.011$ MI

$$\frac{dh}{dt} = 0.58$$
 cm s⁻¹ (2dp) A1 (10)

7. (a) $\overrightarrow{AB} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \therefore \mathbf{r} = \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix}$ MI A1

(b) $-4 + \lambda = 3 + 2\mu$ (1)

 $1 + 5\lambda = -7 - 3\mu$ (2)

 $3 - 2\lambda = 9 + \mu$ (3)

 $2 \times (1) + (3) = -3 + 5\mu$, $\mu = -4$, $\lambda = -1$ MI A1

sub. (2): $1 - 5 = -7 + 12$, not true \therefore do not intersect MI A1

(c) $\overrightarrow{OC} = \begin{bmatrix} -3 + 2\mu \\ 3 + 2\mu \\ -3 + 3\mu \end{bmatrix} = 0$, $6 + 2\mu - 65 - 15\mu - 16 - 2\mu = 0$ MI A1

$$\mu = -5 \therefore \overrightarrow{OC} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$
 MI A1

$$\mu = -5 \therefore \overrightarrow{OC} = \begin{bmatrix} -3 \\ 4 \end{bmatrix} = 0$$
, $6 + 2\mu - 65 - 15\mu - 16 - 2\mu = 0$ MI A1

(b) $-\frac{1}{9}\frac{1}{6}(1 + \frac{2}{1 - 3}) = 0$, $6 + 2\mu - 65 - 15\mu - 16 - 2\mu = 0$ MI A1

(c) $-\frac{1}{9}\frac{1}{6}(1 + \frac{2}{1 - 3}) = 0$, $-\frac{1}{3}\frac{1}{3}$ of $-\frac{1}{3}$ A $-\frac{1}{3}$ All $-\frac{1}{3}$

Total (75)