1. A curve has the equation

$$x^2 + 2xy^2 + y = 4.$$

Find an expression for $\frac{dy}{dx}$ in terms of x and y. (6)

2. Use integration by parts to find

$$\int x^2 e^{-x} dx.$$
 (7)

3. The first four terms in the series expansion of $(1 + ax)^n$ in ascending powers of x are

$$1-4x+24x^2+kx^3$$

where a, n and k are constants and |ax| < 1.

- (a) Find the values of a and n. (6)
- (b) Show that k = -160. (2)
- **4.** (a) Use the trapezium rule with two intervals of equal width to find an estimate for the value of the integral

$$\int_0^3 e^{\cos x} dx,$$

giving your answer to 3 significant figures.

(b) Use the trapezium rule with four intervals of equal width to find another estimate for the value of the integral to 3 significant figures. (2)

(5)

(c) Given that the true value of the integral lies between the estimates made in parts (a) and (b), comment on the shape of the curve $y = e^{\cos x}$ in the interval $0 \le x \le 3$ and explain your answer. (2)

5. A straight road passes through villages at the points A and B with position vectors $(9\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$ and $(4\mathbf{j} + \mathbf{k})$ respectively, relative to a fixed origin.

The road ends at a junction at the point C with another straight road which lies along the line with equation

$$r = (2i + 16j - k) + \mu(-5i + 3j),$$

where μ is a scalar parameter.

(a) Find the position vector of C. (5)

Given that 1 unit on each coordinate axis represents 200 metres,

- (b) find the distance, in kilometres, from the village at A to the junction at C. (4)
- **6.** A small town had a population of 9000 in the year 2001.

In a model, it is assumed that the population of the town, *P*, at time *t* years after 2001 satisfies the differential equation

$$\frac{dP}{dt} = 0.05 P e^{-0.05t}$$
.

- (a) Show that, according to the model, the population of the town in 2011 will be 13 300 to 3 significant figures. (7)
- (b) Find the value which the population of the town will approach in the long term, according to the model. (3)

Turn over

7.

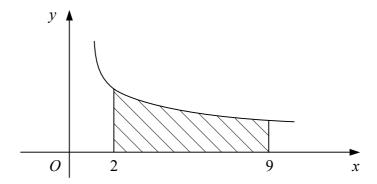


Figure 1

Figure 1 shows the curve with parametric equations

$$x = t^3 + 1$$
, $y = \frac{2}{t}$, $t > 0$.

The shaded region is bounded by the curve, the x-axis and the lines x = 2 and x = 9.

- (a) Find the area of the shaded region. (5)
- (b) Show that the volume of the solid formed when the shaded region is rotated through 2π radians about the x-axis is 12π . (3)
- (c) Find a cartesian equation for the curve in the form y = f(x). (3)
- **8.** (a) Show that the substitution $u = \sin x$ transforms the integral

$$\int \frac{6}{\cos x(2-\sin x)} \, \mathrm{d}x$$

into the integral

$$\int \frac{6}{(1-u^2)(2-u)} \, \mathrm{d}u. \tag{4}$$

- (b) Express $\frac{6}{(1-u^2)(2-u)}$ in partial fractions. (4)
- (c) Hence, evaluate

$$\int_0^{\frac{\pi}{6}} \frac{6}{\cos x (2-\sin x)} dx,$$

giving your answer in the form $a \ln 2 + b \ln 3$, where a and b are integers. (7)

C4 Paper G - Marking Guide

1.
$$2x + 2y^2 + 2x \times 2y \frac{dy}{dx} + \frac{dy}{dx} = 0$$
 M2 A2

$$\frac{dy}{dx} = -\frac{2x + 2y^2}{4xy + 1}$$
 M1 A1 (6)

2.
$$u = x^{2}, u' = 2x, v' = e^{-x}, v = -e^{-x}$$
 M1 A1
 $I = -x^{2} e^{-x} - \int -2x e^{-x} dx = -x^{2} e^{-x} + \int 2x e^{-x} dx$ A2
 $u = 2x, u' = 2, v' = e^{-x}, v = -e^{-x}$ M1
 $I = -x^{2} e^{-x} - 2x e^{-x} - \int -2e^{-x} dx$ A1

$$= -x^{2} e^{-x} - 2x e^{-x} - 2e^{-x} + c$$
A1 (7)

3.
$$(a)$$
 $(1+ax)^n = 1 + nax + \frac{n(n-1)}{2}(ax)^2 + \dots$ B1

$$\therefore an = -4, \qquad \frac{a^2 n(n-1)}{2} = 24$$
 B1

$$\Rightarrow a = \frac{-4}{n}, \text{ sub.} \Rightarrow \frac{16}{n^2} \times \frac{n(n-1)}{2} = 24$$
 M1 A1

$$8(n-1) = 24n$$
, $n = -\frac{1}{2}$, $a = 8$ M1 A1

(b)
$$(1 + 8x)^{-\frac{1}{2}} = \dots + \frac{(-\frac{1}{2})(-\frac{5}{2})(-\frac{5}{2})}{3\times 2}(8x)^3 + \dots$$
 M1

$$\therefore k = -\frac{5}{16} \times 512 = -160$$
 A1 (8)

(a) =
$$\frac{1}{2} \times 1.5 \times [2.7183 + 0.3716 + 2(1.0733)] = 3.93 \text{ (3sf)}$$
 B1 M1 A1

(b) =
$$\frac{1}{2} \times 0.75 \times [2.7183 + 0.3716 + 2(2.0786 + 1.0733 + 0.5336)]$$
 M1
= 3.92 (3sf) A1

5. (a)
$$\overrightarrow{AB} = (4\mathbf{j} + \mathbf{k}) - (9\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}) = (-9\mathbf{i} + 12\mathbf{j} - \mathbf{k})$$
 M1
 $\therefore \mathbf{r} = (9\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}) + \lambda(-9\mathbf{i} + 12\mathbf{j} - \mathbf{k})$ A1
at C , $2 - \lambda = -1$, $\lambda = 3$ M1 A1
 $\therefore \overrightarrow{OC} = (9\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}) + 3(-9\mathbf{i} + 12\mathbf{j} - \mathbf{k}) = (-18\mathbf{i} + 28\mathbf{j} - \mathbf{k})$ A1

(b)
$$\overrightarrow{AC} = 3(-9\mathbf{i} + 12\mathbf{j} - \mathbf{k}), \ AC = 3\sqrt{81 + 144 + 1} = 45.10$$
 M1 A1
 \therefore distance = $200 \times 45.10 = 9020 \text{ m} = 9.02 \text{ km (3sf)}$ M1 A1 (9)

6. (a)
$$\int \frac{1}{p} dP = \int 0.05e^{-0.05e} dt$$

$$\ln |P| = -e^{-0.05e} + c$$

$$t = 0, P = 9000 \Rightarrow 10, 9000 = -1 + c, c = 1 + \ln 9000$$

$$\ln |P| = 1 + \ln 9000 - e^{-0.05e}$$

$$t = 10 \Rightarrow \ln |P| = 1 + \ln 9000 - e^{-0.5} = 9.498$$

$$M1$$

$$P = e^{3.98e} = 13339 = 13300 (38h)$$

$$A1$$

$$(b) \quad t \rightarrow \infty, \ln |P| \rightarrow 1 + \ln 9000$$

$$\therefore P \rightarrow e^{1 + \ln 9000} = 9000e = 24465 = 24500 (38h)$$

$$M1 A1 \quad (10)$$
7. (a)
$$x = 2 \Rightarrow t = 1, x = 9 \Rightarrow t = 2$$

$$\frac{dx}{dt} = 3t^2$$

$$\therefore \text{area} = \int_1^2 \frac{2}{t} \times 3t^2 dt = \int_1^2 6t dt$$

$$= [3t^2]_1^2 = 3(4 - 1) = 9$$

$$M1 A1$$

$$(b) \quad = \pi \int_1^2 (\frac{2}{t})^2 \times 3t^2 dt = \pi \int_1^2 12 dt$$

$$= \pi [12t]_1^2 = 12\pi(2 - 1) = 12\pi$$

$$M1 A1$$

$$(c) \quad t = \frac{2}{y} \therefore x - (\frac{2}{y})^3 + 1 = \frac{8}{y} + 1$$

$$\therefore y^3 = \frac{8}{x - 1}, \quad y = \frac{2}{\sqrt{3x - 1}}$$

$$M1 A1 \quad (11)$$
8. (a)
$$u = \sin x \Rightarrow \frac{du}{dx} = \cos x$$

$$B1$$

$$f = \int \frac{6\cos x}{(1 + u^3)(2 - u)} du$$

$$f = \int \frac{6 + 1 + u}{dx} = \frac{1}{1 + u} + \frac{1}{1 - u} + \frac{C}{2 - u}$$

$$f = \int \frac{6 + 1 + u}{dx} = \frac{1}{1 + u} + \frac{1}{1 - u} + \frac{C}{2 - u}$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{6 + 1}{(1 - u^3)(2 - u)} dt$$

$$f = \int \frac{1}{1 + u} dt$$

$$f = \int \frac{1}{1$$

Total (75)

(15)

M1 A1

 $= 3 \ln 3 - 3 \ln 2 + \ln 2 = 3 \ln 3 - 2 \ln 2$