1. Find

$$\int \cot^2 2x \, dx. \tag{4}$$

2. A curve has the equation

$$4\cos x + 2\sin y = 3.$$

(a) Show that
$$\frac{dy}{dx} = 2 \sin x \sec y$$
. (5)

- (b) Find an equation for the tangent to the curve at the point $(\frac{\pi}{3}, \frac{\pi}{6})$, giving your answer in the form ax + by = c, where a and b are integers. (3)
- 3. (a) Express $\frac{2+20x}{1+2x-8x^2}$ as a sum of partial fractions. (4)
 - (b) Hence find the series expansion of $\frac{2+20x}{1+2x-8x^2}$, $|x| < \frac{1}{4}$, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (5)
- 4. The line l_1 passes through the points P and Q with position vectors $(-\mathbf{i} 8\mathbf{j} + 3\mathbf{k})$ and $(2\mathbf{i} 9\mathbf{j} + \mathbf{k})$ respectively, relative to a fixed origin.

(a) Find a vector equation for
$$l_1$$
. (2)

The line l_2 has the equation

$$\mathbf{r} = (6\mathbf{i} + a\mathbf{j} + b\mathbf{k}) + \mu(\mathbf{i} + 4\mathbf{j} - \mathbf{k})$$

and also passes through the point Q.

- (b) Find the values of the constants a and b. (3)
- (c) Find, in degrees to 1 decimal place, the acute angle between lines l_1 and l_2 . (4)

5. At time t = 0, a tank of height 2 metres is completely filled with water. Water then leaks from a hole in the side of the tank such that the depth of water in the tank, y metres, after t hours satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -k\mathrm{e}^{-0.2t},$$

where k is a positive constant,

(a) Find an expression for y in terms of k and t. (4)

Given that two hours after being filled the depth of water in the tank is 1.6 metres,

(b) find the value of k to 4 significant figures. (3)

Given also that the hole in the tank is h cm above the base of the tank,

(c) show that
$$h = 79$$
 to 2 significant figures. (3)

6.

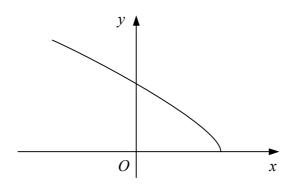


Figure 1

Figure 1 shows the curve with parametric equations

$$x = 2 - t^2$$
, $y = t(t+1)$, $t \ge 0$.

- (a) Find the coordinates of the points where the curve meets the coordinate axes. (4)
- (b) Find the exact area of the region bounded by the curve and the coordinate axes. (6)

Turn over

7. (a) Prove that

$$\frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a. \tag{3}$$

A curve has the equation $y = 4^x - 2^{x-1} + 1$.

(b) Show that the tangent to the curve at the point where it crosses the y-axis has the equation

$$3x \ln 2 - 2y + 3 = 0. ag{5}$$

(c) Find the exact coordinates of the stationary point of the curve. (4)

8.

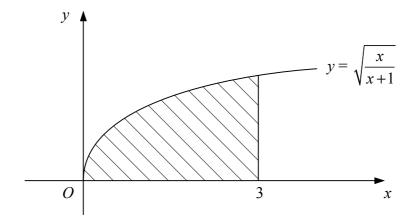


Figure 2

Figure 2 shows the curve with equation $y = \sqrt{\frac{x}{x+1}}$.

The shaded region is bounded by the curve, the x-axis and the line x = 3.

- (a) (i) Use the trapezium rule with three strips to find an estimate for the area of the shaded region.
 - (ii) Use the trapezium rule with six strips to find an improved estimate for the area of the shaded region. (7)

The shaded region is rotated through 2π radians about the *x*-axis.

(b) Show that the volume of the solid formed is $\pi(3 - \ln 4)$. (6)

END

C4 Paper E - Marking Guide

1. =
$$\int (\csc^2 2x - 1) dx$$
 M1 A1
= $-\frac{1}{2} \cot 2x - x + c$ M1 A1 (4)

2. (a)
$$-4 \sin x + (2 \cos y) \frac{dy}{dx} = 0$$
 M1 A2

$$\frac{dy}{dx} = \frac{4\sin x}{2\cos y} = \frac{2\sin x}{\cos y} = 2\sin x \sec y$$

$$\text{M1 A1}$$

$$\text{grad} = 2 \times \frac{\sqrt{3}}{2} \times \frac{2}{\pi} = 2$$

$$\text{B1}$$

(b)
$$\operatorname{grad} = 2 \times \frac{\sqrt{3}}{2} \times \frac{2}{\sqrt{3}} = 2$$
 B1

$$\therefore y - \frac{\pi}{6} = 2(x - \frac{\pi}{3})$$
 M1

$$6y - \pi = 12x - 4\pi$$

A1

(8)

(a)
$$\frac{2+20x}{1+2x-8x^2} = \frac{2+20x}{(1-2x)(1+4x)} \equiv \frac{A}{1-2x} + \frac{B}{1+4x}$$
 B1

 $4x - 2y = \pi$

3.

$$2 + 20x \equiv A(1 + 4x) + B(1 - 2x)$$
 M1

$$x = \frac{1}{2} \implies 12 = 3A \implies A = 4$$

$$x = -\frac{1}{4}$$
 $\Rightarrow -3 = \frac{3}{2}B$ $\Rightarrow B = -2$ $\frac{2+20x}{1+2x-8x^2} \equiv \frac{4}{1-2x} - \frac{2}{1+4x}$ A1

(b)
$$\frac{2+20x}{1+2x-8x^2} = 4(1-2x)^{-1} - 2(1+4x)^{-1}$$
$$(1-2x)^{-1} = 1 + (-1)(-2x) + \frac{(-1)(-2)}{2}(-2x)^2 + \frac{(-1)(-2)(-3)}{3\times 2}(-2x)^3 + \dots$$
 M

$$(1-2x)^{-1} = 1 + (-1)(-2x) + \frac{(-1)(-2)}{2}(-2x)^2 + \frac{(-1)(-2)(-3)}{3\times 2}(-2x)^3 + \dots$$
 M1
= 1 + 2x + 4x² + 8x³ + \dots

$$(1+4x)^{-1} = 1 + (-1)(4x) + \frac{(-1)(-2)}{2}(4x)^2 + \frac{(-1)(-2)(-3)}{3\times 2}(4x)^3 + \dots$$

$$= 1 - 4x + 16x^2 - 64x^3 + \dots$$
A1

$$= 1 - 4x + 16x^{2} - 64x^{3} + \dots$$

$$\frac{2 + 20x}{1 + 2x - 8x^{2}} = 4(1 + 2x + 4x^{2} + 8x^{3} + \dots) - 2(1 - 4x + 16x^{2} - 64x^{3} + \dots)$$
M1

$$= 2 + 16x - 16x^{2} - 160x^{3} + \dots$$
 A1 (9)

4. (a)
$$\overrightarrow{PQ} = (2\mathbf{i} - 9\mathbf{j} + \mathbf{k}) - (-\mathbf{i} - 8\mathbf{j} + 3\mathbf{k}) = (3\mathbf{i} - \mathbf{j} - 2\mathbf{k})$$
 M1

$$\therefore \mathbf{r} = (-\mathbf{i} - 8\mathbf{j} + 3\mathbf{k}) + \lambda(3\mathbf{i} - \mathbf{j} - 2\mathbf{k})$$
 A1

(b)
$$6 + \mu = 2$$
 : $\mu = -4$ M1
 $a + 4\mu = -9$: $a = 7$ A1
 $b - \mu = 1$: $b = -3$

(c) =
$$\cos^{-1} \left| \frac{3 \times 1 + (-1) \times 4 + (-2) \times (-1)}{\sqrt{9 + 1 + 4} \times \sqrt{1 + 16 + 1}} \right|$$
 M1 A1
= $\cos^{-1} \frac{1}{\sqrt{14} \times \sqrt{18}} = 86.4^{\circ} \text{ (1dp)}$ M1 A1 (9)

5. (a)
$$\int dy = \int -ke^{-0.2t} dt$$
 M1
 $y = 5ke^{-0.2t} + c$ A1

$$t = 0, y = 2 \implies 2 = 5k + c, c = 2 - 5k$$
∴ $y = 5ke^{-0.2t} - 5k + 2$
M1

(b)
$$t = 2, y = 1.6 \implies 1.6 = 5ke^{-0.4} - 5k + 2$$
 M1
 $k = \frac{-0.4}{5e^{-0.4} - 5} = 0.2427 \text{ (4sf)}$ M1 A1

(c) as
$$t \to \infty$$
, $y \to h$ (in metres) M1
 \therefore "h" = -5k + 2 = 0.787 m = 78.7 cm \therefore h = 79 M1 A1 (10)

6. (a)
$$x = 0 \Rightarrow t^2 = 2$$

 $t \ge 0 \therefore t = \sqrt{2} \therefore (0, 2 + \sqrt{2})$ M1 A1
 $y = 0 \Rightarrow t(t+1) = 0$
 $t \ge 0 \therefore t = 0 \therefore (2, 0)$ M1 A1
(b) $\frac{dx}{dt} = -2t$ M1
 $area = \int_{\sqrt{2}}^{0} t(t+1) \times (-2t) dt$ A1
 $= \int_{0}^{\sqrt{2}} (2t^3 + 2t) dt$ M1 A1
 $= \left[\frac{1}{2}t^4 + \frac{2}{3}t^3\right]_{0}^{\sqrt{2}}$ M1 A1
 $= (2 + \frac{4}{3}\sqrt{2}) - (0) = 2 + \frac{4}{3}\sqrt{2}$ M1 A1 (10)

(i)
$$\approx \frac{1}{2} \times 1 \times [0 + 0.8660 + 2(0.7071 + 0.8165)] = 1.96 \text{ (3sf)}$$
 B1 M1 A1
(ii) $\approx \frac{1}{2} \times 0.5 \times [0 + 0.8660 + 2(0.5774 + 0.7071 + 0.7746 + 0.8165 + 0.8452)]$
 $= 2.08 \text{ (3sf)}$ M1 A1
(b) $= \pi \int_0^3 \frac{x}{x+1} dx$ M1
 $= \pi \int_0^3 \frac{x+1-1}{x+1} dx = \pi \int_0^3 (1 - \frac{1}{x+1}) dx$ M1
 $= \pi [x - \ln|x + 1|]_0^3$ M1 A1
 $= \pi \{(3 - \ln 4) - (0)\} = \pi (3 - \ln 4)$ M1 A1 (13)

1.5

y 0 0.5774 0.7071 0.7746 0.8165

x = 0 = 0.5

8.

Total (75)

B2