1. Express

$$\frac{2x^3 + x^2}{x^2 - 4} \times \frac{x - 2}{2x^2 - 5x - 3}$$

as a single fraction in its simplest form.

(5)

2. (a) Prove that, for $\cos x \neq 0$,

$$\sin 2x - \tan x \equiv \tan x \cos 2x. \tag{5}$$

(b) Hence, or otherwise, solve the equation

$$\sin 2x - \tan x = 2\cos 2x,$$

for x in the interval $0 \le x \le 180^{\circ}$.

(5)

3.
$$f(x) = x^2 + 5x - 2 \sec x, \quad x \in \mathbb{R}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

(a) Show that the equation f(x) = 0 has a root in the interval [1, 1.5].

A more accurate estimate of this root is to be found using iterations of the form

$$x_{n+1} = \arccos g(x_n).$$

(b) Find a suitable form for g(x) and use this formula with $x_0 = 1.25$ to find x_1, x_2, x_3 and x_4 . Give the value of x_4 to 3 decimal places. (6)

The curve y = f(x) has a stationary point at P.

- (c) Show that the x-coordinate of P is 1.0535 correct to 5 significant figures. (3)
- **4.** (a) Differentiate each of the following with respect to x and simplify your answers.

(i)
$$\sqrt{1-\cos x}$$

$$(ii) \quad x^3 \ln x \tag{6}$$

(b) Given that

$$x = \frac{y+1}{3-2y},$$

find and simplify an expression for $\frac{dy}{dx}$ in terms of y. (5)

- 5. (a) Express $\sqrt{3} \sin \theta + \cos \theta$ in the form $R \sin (\theta + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (b) State the maximum value of $\sqrt{3} \sin \theta + \cos \theta$ and the smallest positive value of θ for which this maximum value occurs. (3)
 - (c) Solve the equation

$$\sqrt{3}\sin\theta + \cos\theta + \sqrt{3} = 0,$$

for θ in the interval $-\pi \le \theta \le \pi$, giving your answers in terms of π . (5)

6. The function f is defined by

$$f(x) \equiv 3 - x^2, \quad x \in \mathbb{R}, \quad x \ge 0.$$

- (a) State the range of f. (1)
- (b) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram. (3)
- (c) Find an expression for $f^{-1}(x)$ and state its domain. (4)

The function g is defined by

$$g(x) \equiv \frac{8}{3-x}, \quad x \in \mathbb{R}, \quad x \neq 3.$$

- (d) Evaluate fg(-3). (2)
- (e) Solve the equation

$$f^{-1}(x) = g(x).$$
 (3)

Turn over

7.

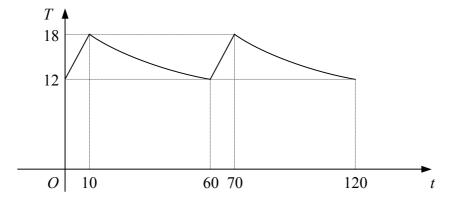


Figure 1

Figure 1 shows a graph of the temperature of a room, $T \,^{\circ}$ C, at time t minutes.

The temperature is controlled by a thermostat such that when the temperature falls to 12°C, a heater is turned on until the temperature reaches 18°C. The room then cools until the temperature again falls to 12°C.

For t in the interval $10 \le t \le 60$, T is given by

$$T = 5 + Ae^{-kt}$$
.

where A and k are constants.

Given that T = 18 when t = 10 and that T = 12 when t = 60,

- (a) show that k = 0.0124 to 3 significant figures and find the value of A, (6)
- (b) find the rate at which the temperature of the room is decreasing when t = 20. (4)

The temperature again reaches 18°C when t = 70 and the graph for $70 \le t \le 120$ is a translation of the graph for $10 \le t \le 60$.

(c) Find the value of the constant B such that for $70 \le t \le 120$

$$T = 5 + Be^{-kt}. (3)$$

END

C3 Paper E - Marking Guide

1.
$$= \frac{x^2(2x+1)}{(x+2)(x-2)} \times \frac{x-2}{(2x+1)(x-3)}$$
 M1 A2
$$= \frac{x^2}{(2x+1)(x-2)}$$
 M1 A1 (5)

2. (a) LHS =
$$2 \sin x \cos x - \frac{\sin x}{\cos x}$$
 M1

$$= \frac{2 \sin x \cos^2 x - \sin x}{\cos x}$$
 M1 A1

$$= \frac{\sin x (2 \cos^2 x - 1)}{\cos x} = \frac{\sin x}{\cos x} \times \cos 2x = \text{RHS}$$
 M1 A1

(b)
$$\tan x \cos 2x = 2 \cos 2x$$

 $\cos 2x (\tan x - 2) = 0$
 $\cos 2x = 0$ or $\tan x = 2$
 $2x = 90, 270$ or $x = 63.4$
 $x = 45^{\circ}, 63.4^{\circ} (1 \text{dp}), 135^{\circ}$
M1 A1 (10)

3. (a)
$$f(1) = 2.30$$
, $f(1.5) = -18.5$ M1 sign change, $f(x)$ continuous : root A1

(b)
$$x^{2} + 5x - 2 \sec x = 0 \implies x^{2} + 5x = \frac{2}{\cos x}$$
 M1
$$\cos x = \frac{2}{x^{2} + 5x}$$
 M1

$$x = \arccos \frac{2}{x^2 + 5x}$$
 \therefore $g(x) = \frac{2}{x^2 + 5x}$ A1
 $x_1 = 1.3119, x_2 = 1.3269, x_3 = 1.3302, x_4 = 1.3310 = 1.331 \text{ (3dp)}$ M1 A2

(c)
$$f'(x) = 2x + 5 - 2 \sec x \tan x$$
 M1
SP: $2x + 5 - 2 \sec x \tan x = 0$
 $f'(1.05345) = 0.00046$, $f'(1.05355) = -0.0022$ M1

A1

(11)

4. (a) (i)
$$= \frac{1}{2} (1 - \cos x)^{-\frac{1}{2}} \times \sin x = \frac{\sin x}{2\sqrt{1 - \cos x}}$$
 M1 A2
(ii) $= 3x^2 \times \ln x + x^3 \times \frac{1}{x} = x^2 (3 \ln x + 1)$ M1 A2

sign change, f'(x) continuous : root : x-coord of P = 1.0535 (5sf)

(b)
$$\frac{dx}{dy} = \frac{1 \times (3 - 2y) - (y + 1) \times (-2)}{(3 - 2y)^2} = \frac{5}{(3 - 2y)^2}$$

$$\frac{dy}{dx} = 1 \div \frac{dx}{dy} = \frac{1}{5} (3 - 2y)^2$$
M1 A1 (11)

5. (a)
$$\sqrt{3} \sin \theta + \cos \theta = R \sin \theta \cos \alpha + R \cos \theta \sin \alpha$$

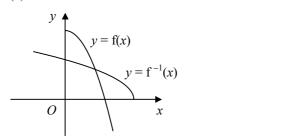
 $R \cos \alpha = \sqrt{3}$, $R \sin \alpha = 1$ $\therefore R = \sqrt{3+1} = 2$ M1 A1
 $\tan \alpha = \frac{1}{\sqrt{3}}$, $\alpha = \frac{\pi}{6}$ $\therefore \sqrt{3} \sin \theta + \cos \theta = 2 \sin (\theta + \frac{\pi}{6})$ M1 A1

(b) maximum = 2 B1 occurs when
$$\theta + \frac{\pi}{6} = \frac{\pi}{2}$$
, $\theta = \frac{\pi}{3}$ M1 A1

(c)
$$2 \sin \left(\theta + \frac{\pi}{6}\right) + \sqrt{3} = 0$$
, $\sin \left(\theta + \frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$ M1
 $\theta + \frac{\pi}{6} = -\frac{\pi}{3}, -\pi + \frac{\pi}{3} = -\frac{\pi}{3}, -\frac{2\pi}{3}$ B1 M1
 $\theta = -\frac{5\pi}{6}, -\frac{\pi}{2}$ A2 (12)

6. (a)
$$f(x) \le 3$$

(b)



(c)
$$y = 3 - x^{2}$$

$$x^{2} = 3 - y$$

$$x = \pm \sqrt{3 - y}$$
M1

$$f^{-1}(x) = \sqrt{3-x} , x \in \mathbb{R}, x \le 3$$
 M1 A2

(d) =
$$f(\frac{4}{3}) = \frac{11}{9}$$
 M1 A1

(e)
$$\sqrt{3-x} = \frac{8}{3-x}$$

 $3-x = \frac{64}{(3-x)^2}$ M1
 $(3-x)^3 = 64$

$$3-x=4$$
 M1
 $x=-1$ A1 (13)

7. (a)
$$t = 10, T = 18$$
 \Rightarrow $18 = 5 + Ae^{-10k}$ (1) $t = 60, T = 12$ \Rightarrow $12 = 5 + Ae^{-60k}$ (2) M1

(1) \Rightarrow $A = \frac{13}{e^{-10k}} = 13e^{10k}$ M1

sub (2) \Rightarrow $7 = 13e^{10k} \times e^{-60k}$

$$e^{-50k} = \frac{7}{13}$$
 A1

$$\therefore k = -\frac{1}{50} \ln \frac{7}{13} = 0.0124 \text{ (3sf)}$$
 M1 A1

$$\therefore A = 13e^{10 \times 0.01238} = 14.7 \text{ (3sf)}$$

(b)
$$T = 5 + 14.71e^{-0.01238t}$$

$$\frac{dT}{dt} = -0.01238 \times 14.71 e^{-0.01238t} = -0.1822e^{-0.01238t}$$
M1 A1

when
$$t = 20$$
, $\frac{dT}{dt} = -0.1822e^{-0.01238 \times 20} = -0.142$ M1

(c)
$$T = 5 + 14.71e^{-0.01238(t-60)}$$
 M1
 $= 5 + 14.71e^{0.7428 - 0.01238t}$
 $= 5 + 14.71e^{0.7428} \times e^{-0.01238t}$ M1
 $= 5 + 30.9e^{-0.01238t}$, $B = 30.9$ (3sf) A1 (13)

Total (75)

B1

В3