1	()	Crreenana
ı.	(a)	Express
	(4)	LAPICOS

$$\frac{x+4}{2x^2+3x+1} - \frac{2}{2x+1}$$

as a single fraction in its simplest form.

(3)

(b) Hence, find the values of x such that

$$\frac{x+4}{2x^2+3x+1} - \frac{2}{2x+1} = \frac{1}{2}.$$
 (3)

2. (a) Prove, by counter-example, that the statement

"cosec $\theta - \sin \theta > 0$ for all values of θ in the interval $0 < \theta < \pi$ "

is false. (2)

(b) Find the values of θ in the interval $0 < \theta < \pi$ such that

$$\csc \theta - \sin \theta = 2$$
,

giving your answers to 2 decimal places.

(5)

(3)

3. Solve each equation, giving your answers in exact form.

(a)
$$\ln(2x-3)=1$$

(b)
$$3e^y + 5e^{-y} = 16$$

4. Differentiate each of the following with respect to *x* and simplify your answers.

(a)
$$\ln(3x-2)$$

(b)
$$\frac{2x+1}{1-x}$$

(c)
$$x^{\frac{3}{2}}e^{2x}$$

5.

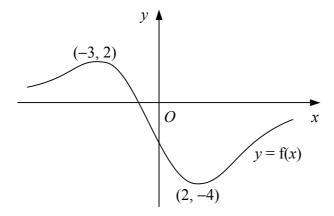


Figure 1

Figure 1 shows the curve y = f(x) which has a maximum point at (-3, 2) and a minimum point at (2, -4).

(a) Showing the coordinates of any stationary points, sketch on separate diagrams the graphs of

(i)
$$y = f(|x|)$$
,

(ii)
$$y = 3f(2x)$$
. (7)

(b) Write down the values of the constants a and b such that the curve with equation y = a + f(x + b) has a minimum point at the origin O. (2)

6. The function f is defined by

$$f(x) \equiv 4 - \ln 3x$$
, $x \in \mathbb{R}$, $x > 0$.

(a) Solve the equation
$$f(x) = 0$$
. (2)

(b) Sketch the curve
$$y = f(x)$$
. (2)

(c) Find an expression for the inverse function,
$$f^{-1}(x)$$
. (3)

The function g is defined by

$$g(x) \equiv e^{2-x}, x \in \mathbb{R}.$$

(d) Show that

$$fg(x) = x + a - \ln b$$
,

where a and b are integers to be found.

Turn over

(3)

- 7. (a) Express $4 \sin x + 3 \cos x$ in the form $R \sin (x + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (b) State the minimum value of $4 \sin x + 3 \cos x$ and the smallest positive value of x for which this minimum value occurs. (3)
 - (c) Solve the equation

$$4\sin 2\theta + 3\cos 2\theta = 2,$$

for θ in the interval $0 \le \theta \le \pi$, giving your answers to 2 decimal places. (6)

- **8.** The curve C has the equation $y = \sqrt{x} + e^{1-4x}$, $x \ge 0$.
 - (a) Find an equation for the normal to the curve at the point $(\frac{1}{4}, \frac{3}{2})$. (4)

The curve *C* has a stationary point with *x*-coordinate α where $0.5 < \alpha < 1$.

(b) Show that α is a solution of the equation

$$x = \frac{1}{4} \left[1 + \ln \left(8\sqrt{x} \right) \right]. \tag{3}$$

(2)

(c) Use the iteration formula

$$x_{n+1} = \frac{1}{4} [1 + \ln(8\sqrt{x_n})],$$

with $x_0 = 1$ to find x_1, x_2, x_3 and x_4 , giving the value of x_4 to 3 decimal places. (3)

- (d) Show that your value for x_4 is the value of α correct to 3 decimal places. (2)
- (e) Another attempt to find α is made using the iteration formula

$$x_{n+1} = \frac{1}{64} e^{8x_n-2}$$
,

with $x_0 = 1$. Describe the outcome of this attempt.

END

C3 Paper C - Marking Guide

1.
$$(a) = \frac{x+4}{(2x+1)(x+1)} - \frac{2}{2x+1}$$
 M1

$$=\frac{(x+4)-2(x+1)}{(2x+1)(x+1)}$$
M1

$$= \frac{2-x}{(2x+1)(x+1)}$$
 A1

(b)
$$\frac{2-x}{(2x+1)(x+1)} = \frac{1}{2}$$
$$2(2-x) = 2x^2 + 3x + 1$$
$$2x^2 + 5x - 3 = 0$$
M1

$$2x^{2} + 5x - 3 = 0$$

$$(2x - 1)(x + 3) = 0$$

$$x = -3, \frac{1}{2}$$
M1
A1
(6)

2. (a) if
$$\theta = \frac{\pi}{2}$$
, $\sin \theta = 1$, $\csc \theta = 1$ M1

∴ cosec
$$\theta$$
 – sin θ = 1 – 1 = 0
∴ statement is false A1

$$(b) 1 - \sin^2 \theta = 2 \sin \theta M1$$

$$\sin^2\theta + 2\sin\theta - 1 = 0$$

$$\sin \theta = \frac{-2 \pm \sqrt{4+4}}{2} = -1 - \sqrt{2}$$
 (no solutions) or $-1 + \sqrt{2}$ M1 A1
 $\theta = 0.4271, \pi - 0.4271$ M1
 $\theta = 0.43, 2.71$ (2dp) A1 (7)

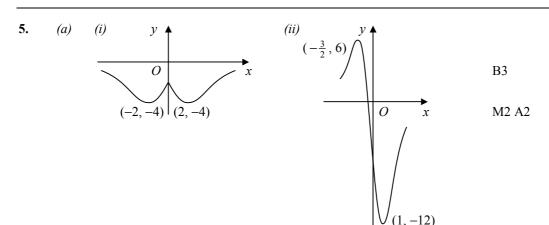
3. (a)
$$2x-3=e$$
 M1
 $x=\frac{1}{2}(e+3)$ M1 A1

(b)
$$3e^{2y} - 16e^{y} + 5 = 0$$
 M1
 $(3e^{y} - 1)(e^{y} - 5) = 0$ M1
 $e^{y} = \frac{1}{3}$, 5 A1
 $y = \ln \frac{1}{3}$, $\ln 5$ M1 A1 (8)

4. (a)
$$=\frac{1}{3x-2} \times 3 = \frac{3}{3x-2}$$
 M1 A1

(b)
$$= \frac{2 \times (1-x) - (2x+1) \times (-1)}{(1-x)^2} = \frac{3}{(1-x)^2}$$
 M1 A2

(c) =
$$\frac{3}{2}x^{\frac{1}{2}} \times e^{2x} + x^{\frac{3}{2}} \times 2e^{2x} = \frac{1}{2}x^{\frac{1}{2}}e^{2x}(3+4x)$$
 M1 A2 (8)

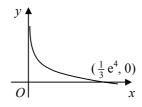


(b)
$$a = 4, b = 2$$
 B2 (9)

6. (a)
$$4 - \ln 3x = 0$$
, $\ln 3x = 4$, $x = \frac{1}{3}e^4$

M1 A1

(b)



B2

(c)
$$y = 4 - \ln 3x$$

$$\ln 3x = 4 - y$$

$$x = \frac{1}{3} e^{4-y}$$

:.
$$f^{-1}(x) = \frac{1}{3} e^{4-x}$$

M1

(d)
$$fg(x) = 4 - \ln 3e^{2-x}$$

 $= 4 - (\ln 3 + \ln e^{2-x})$
 $= 4 - \ln 3 - (2-x)$
 $= x + 2 - \ln 3$ [$a = 2, b = 3$]

(10)

7. $4 \sin x + 3 \cos x = R \sin x \cos \alpha + R \cos x \sin \alpha$ (a) $R \cos \alpha = 4$, $R \sin \alpha = 3$

$$\therefore R = \sqrt{4^2 + 3^2} = 5$$

$$\tan \alpha = \frac{3}{4}, \ \alpha = 0.644 (3sf)$$

$$\therefore$$
 4 sin x + 3 cos x = 5 sin (x + 0.644)

(b)
$$minimum = -5$$

occurs when
$$x + 0.6435 = \frac{3\pi}{2}$$
, $x = 4.07$ (3sf)

M1 A1

(c)
$$5 \sin(2\theta + 0.6435) = 2$$

 $\sin(2\theta + 0.6435) = 0.4$

$$\sin(2\theta + 0.6435) = 0.4$$

$$2\theta + 0.6435 = \pi - 0.4115, 2\pi + 0.4115$$

 $2\theta = 2.087, 6.051$

$$\theta = 1.04, 3.03 \text{ (2dp)}$$

$$\theta = 1.04, 3.03 (2dp)$$

8. (a)
$$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - 4e^{1-4x}$$

grad =
$$-3$$
, grad of normal = $\frac{1}{3}$

$$\therefore y - \frac{3}{2} = \frac{1}{3}(x - \frac{1}{4}) \qquad [4x - 12y + 17 = 0]$$

$$[4x-12y+17=0]$$

(b) SP:
$$\frac{1}{2}x^{-\frac{1}{2}} - 4e^{1-4x} = 0$$
, $\frac{1}{2\sqrt{x}} = 4e^{1-4x}$

$$\frac{1}{8\sqrt{x}} = e^{1-4x}$$

$$8\sqrt{x} = e^{4x-1}$$

$$4x - 1 = \ln 8\sqrt{x}$$

$$x = \frac{1}{4} \left(1 + \ln 8\sqrt{x} \right)$$

(c)
$$x_1 = 0.7699, x_2 = 0.7372, x_3 = 0.7317, x_4 = 0.7308 = 0.731 \text{ (3dp)}$$

(d) let
$$f(x) = \frac{1}{2}x^{-\frac{1}{2}} - 4e^{1-4x}$$

$$f(0.7305) = -0.00025$$
, $f(0.7315) = 0.0017$
sign change, $f(x)$ continuous : root

(e)
$$x_1 = 6.304, x_2 = 1.683 \times 10^{19}$$

diverges rapidly away from root

Total (75)