1.	Solve	the	eq	uation
1.	BUIVE	uic	υq	uation

$$9^x = 3^{x+2}. (3)$$

2. Solve the inequality

$$x(2x+1) \le 6. \tag{4}$$

3. The curve C has the equation $y = (x - a)^2$ where a is a constant.

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6,$$

- (a) find the value of a, (4)
- (b) describe fully a single transformation that would map C onto the graph of $y = x^2$. (2)
- 4. (a) Find in exact form the coordinates of the points where the curve $y = x^2 4x + 2$ crosses the x-axis. (4)
 - (b) Find the value of the constant k for which the straight line y = 2x + k is a tangent to the curve $y = x^2 4x + 2$. (3)
- 5. The curve C with equation $y = (2 x)(3 x)^2$ crosses the x-axis at the point A and touches the x-axis at the point B.
 - (a) Sketch the curve C, showing the coordinates of A and B. (3)
 - (b) Show that the tangent to C at A has the equation

$$x + y = 2. (7)$$

6. $f(x) = 9 + 6x - x^2.$

(a) Find the values of A and B such that

$$f(x) = A - (x + B)^{2}.$$
 (4)

- (b) State the maximum value of f(x). (1)
- (c) Solve the equation f(x) = 0, giving your answers in the form $a + b\sqrt{2}$ where a and b are integers. (3)
- (d) Sketch the curve y = f(x). (2)
- 7. (a) An arithmetic series has a common difference of 7.

Given that the sum of the first 20 terms of the series is 530, find

- (i) the first term of the series,
- (ii) the smallest positive term of the series.

(5)

(b) The terms of a sequence are given by

$$u_n = (n+k)^2, n \ge 1,$$

where k is a positive constant.

Given that $u_2 = 2u_1$,

(i) find the value of k,

(ii) show that
$$u_3 = 11 + 6\sqrt{2}$$
. (6)

Turn over

- **8.** The straight line l_1 passes through the point A (-2, 5) and the point B (4, 1).
 - (a) Find an equation for l_1 in the form ax + by = c, where a, b and c are integers. (4)

The straight line l_2 passes through B and is perpendicular to l_1 .

(b) Find an equation for l_2 . (3)

Given that l_2 meets the y-axis at the point C,

- (c) show that triangle ABC is isosceles. (4)
- **9.** The curve C has the equation y = f(x) where

$$f'(x) = 1 + \frac{2}{\sqrt{x}}, x > 0.$$

The straight line *l* has the equation y = 2x - 1 and is a tangent to *C* at the point *P*.

- (a) State the gradient of C at P. (1)
- (b) Find the x-coordinate of P. (3)
- (c) Find an equation for C. (6)
- (d) Show that C crosses the x-axis at the point (1, 0) and at no other point. (3)

END

C1 Paper G - Marking Guide

1.
$$(3^2)^x = 3^{x+2}$$

 $2x = x + 2, x = 2$

2.
$$2x^2 + x - 6 \le 0$$

 $(2x - 3)(x + 2) \le 0$
critical values: $-2, \frac{3}{2}$

$$-2$$
 $\frac{3}{2}$

$$-2 \le x \le \frac{3}{2}$$

3. (a)
$$y = x^2 - 2ax + a^2$$

 $\frac{dy}{dx} = 2x - 2a = 2x - 6$

$$\therefore a = 3$$

(7)

$$x^{2} - 4x + 2 = 0$$

$$x = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm 2\sqrt{2}}{2}$$

$$x = 2 \pm \sqrt{2}$$
, $\therefore (2 - \sqrt{2}, 0), (2 + \sqrt{2}, 0)$

(b)
$$x^2 - 4x + 2 = 2x + k$$
, $x^2 - 6x + 2 - k = 0$
tangent : equal roots, $b^2 - 4ac = 0$

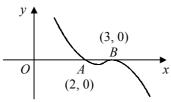
tangent : equal roots,
$$b^2 - 4ac = (-6)^2 - [4 \times 1 \times (2 - k)] = 0$$

$$(2-k)] = 0$$

$$36 - 4(2 - k) = 0, \quad k = -7$$

4.

(a)



В3

M1

M1

(b)
$$y = (2 - x)(9 - 6x + x^2)$$

$$y = 18 - 12x + 2x^{2} - 9x + 6x^{2} - x^{3}$$

$$y = 18 - 21x + 8x^{2} - x^{3}$$

$$y = 18 - 21x + 8x^2 - x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -21 + 16x - 3x^2$$

$$grad = -21 + 32 - 12 = -1$$

$$\therefore y - 0 = -(x - 2)$$
$$x + y = 2$$

M1

M1

$$f(x) = 9 - [x^2 - 6x]$$

= 9 - [(x - 3)^2 - 9]
= 18 - (x - 3)^2, A = 18, B = -3

(c)
$$18 - (x - 3)^2 = 0$$
,

M1 A1

$$x = 3 \pm 3\sqrt{2}$$

 $x - 3 = \pm \sqrt{18}$

B2

(10)

(10)

7. (a) (i)
$$\frac{20}{3}[2a + (19 \times 7)] = 530$$
 MI $2a + 133 = 53, a = -40$ MI A1 (ii) $-40 + 7k = -40 + 42 = 2$ MI A1 (iii) $-40 + 7k = -40 + 42 = 2$ MI A1 (iii) $(2 + k)^2 = 2(2 + k)^2$ BI $(2 + k)^2 = 2(1 + k)^2 = 2(2 + k)^2$ MI $4 + 4k + k^2 = 2 + 4k + 2k^2$ MI $4 + 4k + k^2 = 2 + 4k + 2k^2$ MI A1 (iii) $u_3 = (3 + \sqrt{2})^2 = 9 + 6\sqrt{2} + 2 = 11 + 6\sqrt{2}$ MI A1 (11)

8. (a) $grad = \frac{1 - 5}{4 - (-2)} = -\frac{2}{3}$ MI A1 $\frac{1}{3} = \frac{1}{3} = \frac{3}{2}$ MI A1 (11)

(b) $grad l_2 = \frac{1}{-\frac{1}{3}} = \frac{3}{2}$ MI A1 $\frac{1}{3} = \frac{1}{3} = \frac{3}{2}$ MI A1 $\frac{1}{3} = \frac{1}{3} = \frac{3}{2} = \frac{1}{3} = \frac{3}{2}$ MI A1 $\frac{1}{3} = \frac{1}{3} = \frac{3}{2} = \frac{1}{3} = \frac{3}{3} = \frac{3}$

Total (75)