1. Find in exact form the real solutions of the equation

$$x^4 = 5x^2 + 14. ag{3}$$

2. Express

$$\frac{2}{3\sqrt{5}+7}$$

in the form $a + b\sqrt{5}$ where a and b are rational.

(3)

3. (a) Solve the equation

$$x^{\frac{3}{2}} = 27. {(2)}$$

(b) Express $(2\frac{1}{4})^{-\frac{1}{2}}$ as an exact fraction in its simplest form.

(2)

4.

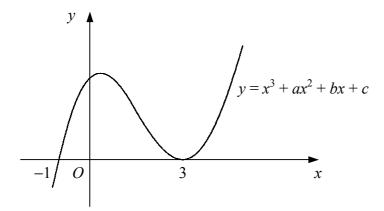


Figure 1

Figure 1 shows the curve with equation $y = x^3 + ax^2 + bx + c$, where a, b and c are constants. The curve crosses the x-axis at the point (-1, 0) and touches the x-axis at the point (3, 0).

Show that a = -5 and find the values of b and c.

(5)

5. Given that

$$y=\frac{x^4-3}{2x^2},$$

(a) find
$$\frac{dy}{dx}$$
, (4)

(b) show that
$$\frac{d^2y}{dx^2} = \frac{x^4 - 9}{x^4}$$
. (2)

6. (a) Sketch on the same diagram the curve with equation $y = (x - 2)^2$ and the straight line with equation y = 2x - 1.

Label on your sketch the coordinates of any points where each graph meets the coordinate axes. (5)

(b) Find the set of values of x for which

$$(x-2)^2 > 2x - 1. ag{3}$$

7. A curve has the equation $y = \frac{x}{2} + 3 - \frac{1}{x}$, $x \neq 0$.

The point A on the curve has x-coordinate 2.

- (a) Find the gradient of the curve at A. (4)
- (b) Show that the tangent to the curve at A has equation

$$3x - 4y + 8 = 0. (3)$$

The tangent to the curve at the point B is parallel to the tangent at A.

(c) Find the coordinates of
$$B$$
. (3)

Turn over

- **8.** The straight line l_1 has gradient $\frac{3}{2}$ and passes through the point A (5, 3).
 - (a) Find an equation for l_1 in the form y = mx + c. (2)

The straight line l_2 has the equation 3x - 4y + 3 = 0 and intersects l_1 at the point B.

- (b) Find the coordinates of B. (3)
- (c) Find the coordinates of the mid-point of AB. (2)
- (d) Show that the straight line parallel to l_2 which passes through the mid-point of AB also passes through the origin. (4)
- **9.** The third term of an arithmetic series is $5\frac{1}{2}$.

The sum of the first four terms of the series is $22\frac{3}{4}$.

- (a) Show that the first term of the series is $6\frac{1}{4}$ and find the common difference. (7)
- (b) Find the number of positive terms in the series. (3)
- (c) Hence, find the greatest value of the sum of the first n terms of the series. (2)
- 10. The curve C has the equation y = f(x).

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - \frac{2}{x^3}, \quad x \neq 0,$$

and that the point P(1, 1) lies on C,

- (a) find an equation for the tangent to C at P in the form y = mx + c, (3)
- (b) find an equation for C, (5)
- (c) find the x-coordinates of the points where C meets the x-axis, giving your answers in the form $k\sqrt{2}$. (5)

END

C1 Paper F - Marking Guide

1.
$$x^4 - 5x^2 - 14 = 0$$
, $(x^2 + 2)(x^2 - 7) = 0$
 $x^2 = -2$ (no solutions) or 7

$$x^2 = -2$$
 (no solutions) or 7

$$x = \pm \sqrt{7}$$

2.
$$=\frac{2}{3\sqrt{5}+7} \times \frac{3\sqrt{5}-7}{3\sqrt{5}-7} = \frac{6\sqrt{5}-14}{45-49} = \frac{7}{2} - \frac{3}{2}\sqrt{5}$$

(3)

3. (a)
$$x = (\sqrt[3]{27})^2 = 3^2 = 9$$

(b)
$$= \left(\frac{9}{4}\right)^{-\frac{1}{2}} = \sqrt{\frac{4}{9}} = \frac{2}{3}$$

4. cubic, coeff of
$$x^3 = 1$$
, crosses x-axis at $(-1, 0)$, touches at $(3, 0)$

$$\therefore y = (x+1)(x-3)^2$$

$$y = (x+1)(x-3)^2$$

$$= (x+1)(x^2 - 6x + 9)$$

$$= x^3 - 6x^2 + 9x + x^2 - 6x + 9$$

$$= x^3 - 5x^2 + 3x + 9$$

$$= x - 5x + 5x + 5$$

$$\therefore a = -5, b = 3, c = 9$$

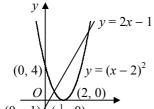
(5)

(a)
$$y = \frac{1}{2}x^2 - \frac{3}{2}x^{-2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + 3x^{-3}$$

(b)
$$\frac{d^2y}{dx^2} = 1 - 9x^{-4} = \frac{x^4 - 9}{x^4}$$

5.



(b)
$$x^2 - 4x + 4 > 2x - 1$$

 $x^2 - 6x + 5 > 0$

$$x^2 - 6x + 5 > 0$$

 $(x - 1)(x - 5) > 0$

$$x < 1 \text{ or } x > 5$$

7. (a)
$$\frac{dy}{dx} = \frac{1}{2} + x^{-2}$$

grad =
$$\frac{1}{2} + 2^{-2} = \frac{3}{4}$$

(b)
$$x = 2$$
 : $y = \frac{7}{2}$

$$y - \frac{7}{2} = \frac{3}{4}(x - 2)$$

$$4y - 14 = 3x - 6$$

$$3x - 4y + 8 = 0$$

(c) at B, grad =
$$\frac{3}{4}$$

$$\therefore \frac{1}{2} + x^{-2} = \frac{3}{4}$$

$$x^2 = 4$$
, $x = 2$ (at A), -2

$$\therefore B(-2, \frac{5}{2})$$

(8)

8. (a)
$$y-3=\frac{3}{2}(x-5)$$
 MI
 $y=\frac{3}{2}x-\frac{5}{2}$ A1
(b) $3x-4(\frac{3}{2}x-\frac{9}{2})+3=0$ MI
 $x=7$ A1
 $\therefore B(7,6)$ A1
(c) $-(\frac{5+7}{2},\frac{3+6}{2})=(6,\frac{9}{2})$ MI A1
(d) $l_5: y=\frac{3}{4}x+\frac{3}{4} \therefore \text{grad}=\frac{3}{4}$ B1
 $\therefore y-\frac{9}{2}=\frac{1}{4}(x-6)$ MI
 $y=\frac{1}{4}x$ A1
when $x=0,y=0$ \therefore passes through origin A1 (11)
9. (a) $a+2d=5\frac{1}{2}$ (1) B1
 $\frac{4}{2}(2a+3d)=22\frac{1}{4}$ (2) MI A1
(2) $\Rightarrow 4a+6d=22\frac{1}{4}$ (2) MI A1
(2) $\Rightarrow 4a+6d=22\frac{1}{4}$ (3) MI A1
(b) $6\frac{1}{4}-\frac{3}{8}(n-1)>0$ MI A1
 $a=\frac{1}{2}(3\frac{1}{2}x-6\frac{1}{4})=-\frac{3}{8}$ MI A1
(c) $a=\frac{17}{2}(12\frac{1}{2}+(16\times\frac{3}{8}))$ MI A1
(c) $a=\frac{17}{2}(12\frac{1}{2}-6)=\frac{17}{2}\times\frac{13}{2}=\frac{221}{4}=55\frac{1}{4}$ A1 (12)
10. (a) grad $=8-2=6$ B1
 $\therefore y-1=6(x-1)$ MI $\Rightarrow y-6x-5$ A1
(b) $y=\int (8x-\frac{2}{3}) dx$ $\Rightarrow y=4x^2+x^2+c$ MI A2
(1,1) $\therefore 1-4+1+c$ $\Rightarrow y=4x^2+x^2+c$ MI A2
(2,2,3,4) A3
(3,4) A4
(4,2,4) A5
(5,4) A7
MI A2
(6,4) A8
(7,4) A7
MI A2
(1,1) $\therefore 1-4+1+c$ MI $\Rightarrow y-6x-5$ A1
(6) $y=\frac{1}{2}(8x-\frac{2}{3}) dx$ MI A2
(7,1) $\therefore 1-4+1+c$ MI $\Rightarrow y-6x-5$ A1
(8) $y=4x^2+x^2+c$ MI A2
(9) $4x^2+x^2+a$ MI A1
(12) MI A2
(11) $x=\frac{1}{2}(x+\frac{1}{2})=0$ MI $\Rightarrow x^2+\frac{1}{2}$ A1
 $x=\frac{1}{2}(x+\frac{1}{2})=0$ MI $\Rightarrow x^2+\frac{1}{2}(x+\frac{1}{2})=0$ MI A1
 $\Rightarrow x^2+\frac{1}{2}(x+\frac{1}{2})=0$ MI A1
MI A1 (13)

Total (75)