1. $f(x) = (\sqrt{x} + 3)^2 + (1 - 3\sqrt{x})^2$.

Show that f(x) can be written in the form ax + b where a and b are integers to be found.

(3)

2. The curve C has the equation

$$y = x^2 + ax + b,$$

where *a* and *b* are constants.

Given that the minimum point of C has coordinates (-2, 5), find the values of a and b. (4)

3. The sequence $u_1, u_2, u_3, ...$ is defined by

$$u_n = 2^n + kn$$

where k is a constant.

Given that $u_1 = u_3$,

(a) find the value of
$$k$$
, (3)

(b) find the value of u_5 . (2)

4. Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 + 1,$$

and that y = 3 when x = 0, find the value of y when x = 2.

5. $f(x) = 4x - 3x^2 - x^3.$

(a) Fully factorise
$$4x - 3x^2 - x^3$$
. (3)

(b) Sketch the curve y = f(x), showing the coordinates of any points of intersection with the coordinate axes. (3)

6.	The straight line <i>l</i> has the equation $x - 2y = 12$ and meets the coordinate axes at
	the points A and B .

Find the distance of the mid-point of AB from the origin, giving your answer in the form $k\sqrt{5}$.

7. (a) Given that $y = 2^x$, find expressions in terms of y for

(i)
$$2^{x+2}$$
,

(ii)
$$2^{3-x}$$
.

(b) Show that using the substitution $y = 2^x$, the equation

$$2^{x+2} + 2^{3-x} = 33$$

can be rewritten as

$$4y^2 - 33y + 8 = 0. (2)$$

(c) Hence solve the equation

$$2^{x+2} + 2^{3-x} = 33. (4)$$

8. Given that

$$y = 2x^{\frac{3}{2}} - 1,$$

(a) find
$$\frac{d^2y}{dx^2}$$
,

(b) show that

$$4x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 3y = k,$$

where k is an integer to be found, (2)

(c) find

$$\int y^2 dx.$$
 (6)

Turn over

(6)

- **9.** The second and fifth terms of an arithmetic series are 26 and 41 repectively.
 - (a) Show that the common difference of the series is 5. (4)
 - (b) Find the 12th term of the series. (3)

Another arithmetic series has first term -12 and common difference 7.

Given that the sums of the first *n* terms of these two series are equal,

(c) find the value of n. (4)

10.

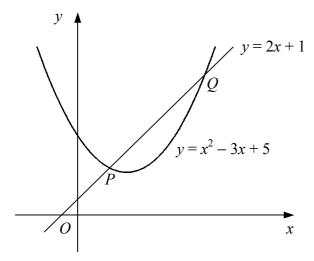


Figure 1

Figure 1 shows the curve $y = x^2 - 3x + 5$ and the straight line y = 2x + 1. The curve and line intersect at the points P and Q.

- (a) Using algebra, show that P has coordinates (1, 3) and find the coordinates of Q. (4)
- (b) Find an equation for the tangent to the curve at P. (4)
- (c) Show that the tangent to the curve at Q has the equation y = 5x 11. (2)
- (d) Find the coordinates of the point where the tangent to the curve at P intersects the tangent to the curve at Q. (3)

END

C1 Paper B - Marking Guide

1.
$$f(x) = x + 6\sqrt{x} + 9 + 1 - 6\sqrt{x} + 9x$$

= 10x + 10, $a = 10, b = 10$

2. quadratic, coeff of $x^2 = 1$, minimum (-2, 5)

$$y = (x+2)^2 + 5$$

$$= x^2 + 4x + 9, a = 4, b = 9$$

 $u_1 = 2 + k$ 3. (a)

$$u_3 = 8 + 3k$$

$$u_4 = u_4 \cdot 2 + k$$

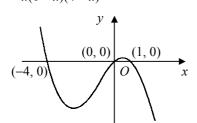
$$u_1 = u_3$$
 : $2 + k = 8 + 3k$

(b)
$$u_5 = 2^5 - 3(5) = 32 - 15 = 17$$

 $y = \int (2x^3 + 1) dx$

$$y = \frac{1}{2}x^4 + x + c$$

$$x = 0, y = 3$$
 : $c = 3$


$$y = \frac{1}{2}x^4 + x + 3$$

when
$$x = 2$$
, $y = 8 + 2 + 3 = 13$

5. (a) $=x(4-3x-x^2)$ =x(1-x)(4+x)

M1 M1 A1

(b)

В3

(6)

(6)

6. $x = 0 \implies y = -6$ $\therefore (0, -6)$

$$y = 0 \implies x = 12$$
 $\therefore (12, 0)$

mid-point =
$$(\frac{0+12}{2}, \frac{-6+0}{2}) = (6, -3)$$

M1 A1

dist. from
$$O = \sqrt{6^2 + (-3)^2} = \sqrt{36 + 9} = \sqrt{45}$$

$$=\sqrt{9\times5}=3\sqrt{5}$$

(i) $2^{x+2} = 2^2 \times 2^x = 4y$ 7. (a)

M1 A1

(ii)
$$2^{3-x} = \frac{2^3}{2^x} = \frac{8}{y}$$

M1 A1

 $2^{x+2} + 2^{3-x} = 33 \implies 4y + \frac{8}{y} = 33$ (b)

$$4y^2 + 8 = 33y$$

M1

$$4y^2 + 8 = 33y$$
$$4y^2 - 33y + 8 = 0$$

A1

(c)
$$(4y-1)(y-8) = 0$$

M1

$$y = \frac{1}{4}, 8$$

$$2^x = \frac{1}{4}$$
, 8

$$2^x = \frac{1}{4}$$
, 8
 $x = -2$, 3

8. (a)
$$\frac{dy}{dx} = 3x^{\frac{1}{2}}$$
 MI AI

$$\frac{d^2y}{dx^2} = \frac{3}{2}x^{-\frac{1}{2}}$$
 AI

(b) LHS = $4x^2(\frac{3}{3}x^{-\frac{1}{2}}) - 3(2x^{\frac{1}{2}} - 1)$

$$= 6x^{\frac{1}{2}} - 6x^{\frac{1}{2}} + 3$$
 MI
$$= 3 \quad [k-3]$$
 MI AI

(c) = $\int (2x^{\frac{3}{2}} - 1)^2 dx$

$$= \int (4x^3 - 4x^{\frac{1}{2}} + 1) dx$$
 MI AI
$$= x^4 - \frac{8}{3}x^{\frac{3}{2}} + x + c$$
 MI A3 (II)

9. (a) $a + d - 26$ MI
$$a + 4d = 41$$
 AI
subtracting, $3d = 15$ MI
$$d = 5$$
 AI

(b) $a = 21$ BI
$$u_{12} - 21 + (11 \times 5) = 76$$
 MI AI
$$n(5n + 37) = n(7n - 31)$$

$$2n(n + 34) = 0$$
 MI
$$n > 0 \cdot n = 34$$
 MI

10. (a) $x^2 - 3x + 5 = 2x + 1$

$$x^2 - 5x + 4 = 0$$
 MI
$$x = 1, 4$$
 MI
$$x^3 - 3x + 5 = 2x + 1$$

$$x^3 - 5x + 4 = 0$$
 MI
$$x = 1, 4$$
 MI
$$x = 1, y = 2(1) + 1 = 3$$

$$\therefore P(1, 3), Q(4, 9)$$
 AI

(b) $\frac{dy}{dx} = 2x - 3$ MI
$$y = 3x - (x - 1)$$
 [$y = 4 - x$] MI
$$x = 5$$

$$\therefore y - 9 = 5(x - 4)$$
 MI
$$x = 5$$

$$\therefore y - 9 = 5(x - 4)$$
 MI
$$x = \frac{5}{2}$$
 AI

(d) $4 - x = 5x - 11$ AI
$$x = \frac{5}{2}$$
 AI
$$\therefore (\frac{5}{2}, \frac{3}{2})$$
 AI (13)

Total (75)

Performance Record - C1 Paper B

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	algebra	compl. square	sequence	integr.	curve sketch	straight line	indices	diff., integr.	AP	diff., tangents	
Marks	3	4	5	6	6	6	10	11	11	13	75
Student											
											<u> </u>